태터데스크 관리자

도움말
닫기
적용하기   첫페이지 만들기

태터데스크 메시지

저장하였습니다.

해산물에 대한 전 세계적인 수요가 인구와 소득 증가로 함께 증가함에 따라, 어류 양식은 부정적인 환경적 외부 효과에도 불구하고 그 어느 때보다 더 절실해졌다. 어떻게 양식 산업이 보존과 에너지 사용 모두에서 장기적인 지속 가능성을 달성할 수 있을까?


해산물 수요는 급등하고 있고 이번 세기 동안 계속해서 늘어날 것이다. 그것을 충족할 수 있는 유일한 방법은 양식업을 통해서이다. 하지만, 차세대 양식업이 이전의 것보다 훨씬 더 생태학적으로 책임이 있는 반면, 그것은 또한 훨씬 더 많은 에너지를 사용할 것이다. 만일 추가적인 에너지가 깨끗하고 저렴하지 않다면, 새로운 양식업 기술은 우리의 더 넓은 환경과 기후 목표에 도움이 되지 못할 것이다.


해산물 수요의 증가는 어느 정도 좋은 것이다. 물고기는 돼지 고기와 소고기보다 더 효과적인데, 왜냐하면 같은 양의 단백질을 생산하는데 더 적은 양의 투입을 필요로 하기 때문이다. 따라서, 세계의 육류 소비가 계속 증가하고 있기 때문에, 그것의 상당 부분이 바다로부터 오는 것이 타당하다.


반면에 해산물 수요의 증가는 상당한 생태학적 위험을 내포하고 있다. 유엔 식량 농업기구(FAO)에 따르면 전 세계 어류 자원의 거의 3분의 1이 이미 지속 불가능한 수준에서 수확되고 있는데, 이것은 야생 개체군이 포획된 비율을 보충하기에 충분할 만큼 빠르게 번식하지 못한다는 뜻이다. 그리고, 또한 야생 개체군은 수요 증가에 대응하는 능력이 부족하기 때문에, 더 많은 물고기들이 사육되어야 한다.


이런 이유에서 양식업은 이미 인간이 소비하는 어류 생산의 선도적인 방식이다. 하지만, 어업과 마찬가지로, 그것은 생태학적 위험도 내포하고 있다. 양식업은 해안이나 내륙의 강이나 연못 근처에서 운영되기 때문에, 자연 서식지를 파괴하고, 질소 오염에 기여하며, 어류 공급에 과도한 압력을 가하는 경향이 있다. 예를 들어, 물고기 사육은 동남 아시아의 맹그로브 삼림 벌채의 주요 원인들 중 하나이다.


하지만 이러한 보호 문제를 염두에 두더라도, 양식업은 미래의 수요를 충족하기 위한 유일한 선택 사항으로 남아 있다. 그러므로 오늘날 산업이 택하는 길은 향후 몇년 동안 광범위한 환경적 영향을 미치게 될 것이다.


가까운 장래에, 양어장은 실제로 보다 청결하게 만들 수 있다. 일부 책임 있는 생산자들은 비디오 카메라에 의한 사료 섭취 모니터링에서부터 조개류와 해조류 같은 필터 공급기를 그들의 시스템에 통합하는 것까지 오염에 맞서 싸우는 새로운 기법과 기술을 도입했다. 다른 이들은 물고기 사료를 식물성 단백질로 대체하거나 물고기 밥을 더 지속 가능하게 하기 위해 새로운 생물 공학적 방법을 채택함으로써 먹이에 대한 의존을 줄이려고 한다. 하지만 이런 양식장 시스템이 해안이나 담수 환경에 자리잡고 있는 한, 그들은 계속해서 서식지 감소와 생태계 파괴에 기여할 것이다.


장기적인 관점에서 볼 때 전문가들은 일반적으로 앞으로 두가지 방법을 제시하는데 그것이 육지 기반 재순환 시스템과 연안 양식업(Offshore aquaculture)이다. 두가지 방법 모두, 잠재적으로 양식업의 부정적인 외부 효과를 줄일 수 있고, 어류의 생산을 앞으로도 계속 유지할 수 있게 할 것이다.


첫번째 접근으로, 양식장은 바다에서 재순환 양식장 시스템(RAS)으로 이동될 것이다. 이 시스템에서 물고기는 펌프, 히터, 통풍기 및 필터에 의해 제어되는 실내 탱크에 저장된다. 이 접근법의 가장 큰 장점 중 하나는 적응성이다: RAS는 도시의 넓은 땅에서부터 문닫은 축사까지 거의 모든 곳에 위치할 수 있다.


더 나은 것은, 이런 시스템들이 그들이 사용하는 거의 모든 물을 재활용하도록 설계되어, 해안 오염의 문제를 제거하는 것이다. 따라서, 지지 단체인 Seafood Watch는 현재 모든 RAS 양식 물고기에 "최상의 선택" 태그를 부여하고 있다.


다른 선택권은 양식업을 반대 방향, 즉 바다로 옮기는 것이다. 해양 시스템은 깊은 바다와 강한 해류를 이용해 민감한 해안 생태계로부터 과도한 영양분과 폐기물을 끌어들임으로써 해양의 힘을 이용한다. 결과적으로, 그들은 기계식 펌프나 필터가 필요하지 않다.(전동식 펜이 결국 바다에 버틸지도 모르지만)


미국에서는 양식 산업이 RAS 생산 쪽으로 발전하기 시작했다. 예를 들어, 노르웨이의 한 회사가 Maine에 대규모의 새로운 육상 기반 연어 양식장을 지을 계획을 발표했다. 그리고 해외 프로젝트의 예는 노르웨이, 캘리포니아, 하와이 해안에서 찾을 수 있다. 하지만 두 시스템 모두 표준이라기보다는 틈새 시장이다.


양식업에 대한 청정한 접근법과 관련된 주요 문제 중 하나는 그들이 에너지를 많이 소모한다는 점이다. 육지에 기반을 둔 시스템에서는 여과, 물 교환, 살포와 같은 자연적인 과정이 기계적으로 이루어져야 하는데, 이것은 많은 전기를 필요로 한다. 프랑스와 같은 저탄소 전력망이 있는 곳에서는 문제가 없겠지만, 석탄에 크게 의존하는 노바 스코샤Nova Scotia와 같은 곳에서는 반드시 문제가 될 것이다.


마찬가지로, 해상 운항은 운송과 유지 보수를 위한 디젤 연료를 필요로 하고, 그것은 전기 보트나 저탄소 액체 연료가 더 실용적이 될 때까지 계속 유지될 것이다. 해양 개방 양식장(열린 바다 양식)은 상업적인 어업보다 더 적은 양의 디젤 연료를 필요로 하고 태양열, 풍력 또는 파도와 같은 재생 가능한 에너지원에서 운영될 수 있지만, 해양 양식장은 기존의 양식장보다 더 에너지를 많이 소모한다. 그리고 새로운 양식장 시스템이 현재의 운영 및 규제 문제를 극복할 수 있다 하더라도, 가장 큰 장애물은 저렴한 저탄소 에너지를 사용할 수 없다는 점일 것이다. 화석 연료가 전 세계 에너지 사용의 대부분을 차지하는 한, 차세대 양식업의 환경적 약속은 실현되지 않을 것이다.


이것은 광범위한 산업 분야에 적용된다. 전반적으로 더 깨끗하고 더 저렴한 에너지가 없다면 우리는 더 넓은 환경과 기후 목표를 달성할 수 없을 것이다. 우리의 현재 에너지 기술(핵 원자력 및 재생 에너지 포함)은 여전히 에너지 수요를 충족시킬 수 있는 방법이 있다. 그 사이에, 수산 업계는 더 많은 투자를 하고 육지에서든 바다에서든 지속 가능성을 향해 나아갈 수 있도록 새로운 혁신을 개발해야 할 것이다.

-영어원문: PS

"기존 작물 노동력 10% 불과…높은 가격"…건강 챙기는 소비자에 인기



경남에서도 바나나가 재배돼 눈길을 끈다.

하동군은 횡천면 박명상(66) 씨가 최근 바나나 재배에 성공해 시판을 들어갔다고 1일 밝혔다.

박 씨는 지난 30여 년간 시설 하우스에서 파프리카 등을 재배해 왔다.

그는 파프리카 단일 품종으로 연간 3억∼4억원의 매출을 올렸다. 순이익은 총매출에 20∼30% 수준이었다.

1㎏당 5천원선에 팔리던 파프리카 가격이 2015년부터 하락하더니 급기야 손익분기점인 1㎏당 2천원까지 폭락했다.


위기를 느낀 박 씨는 고민을 거듭하다 2016년 10월 대체작물로 바나나 종자를 사들여 심고 재배하기 시작했다.

박 씨는 올해 1월부터 200여 그루에서 바나나를 수확하고 있다.



1그루 당 25∼30㎏의 바나나가 열렸다. 재배에 성공한 것이다.

이런 사실이 알려지면서 전국 미식가들의 전화 주문이 잇따르고 있다.

특히 후숙 작업이 필요한 수입산에 비해 박 씨의 바나나는 후숙 작업을 거치지 않아 건강을 챙기려는 소비자들의 인기를 끌고 있다.


수입 바나나는 통상 들여와서 판매할 때까지 한 달 이상 걸린다.

약품처리와 미리 따서 나중에 익히는 후숙 작업 탓에 신선도와 품질이 떨어진다.


하지만 박 씨는 무농약·친환경 재배로 바나나를 키우고 별도 후숙 작업을 거치지 않는다.

이런 까닭에 박 씨의 바나나는 1㎏당 5천∼6천원으로 수입산보다 2천∼2천500원 높은 가격에 팔린다.

특히 재배 중인 바나나는 병해충이 발생하지 않는 데다 가지치기 등 잔손질이 필요하지 않아 노동력이 기존 작물의 10%만 든다고 박 씨는 설명했다.


그는 현재 파프리카와 고추, 오이 등을 키우는 시설 하우스 전체에 바나나를 확대 재배할 계획이다.



박 씨는 "정부에서 수출농산물에는 수출보조금 등을 지원하고 있지만, 수입 작물을 재배하는 농가에는 지원하지 않고 있다"며 "수입 작물을 재배하면 외화를 아낀다는 점에서 보조금을 줘야 한다"고 건의했다.

-출처: 연합뉴스

주요 메세지


1. 소농은 세계 인구의 70% 이상에게 먹을거리를 제공하는 주요한 또는 유일한 제공자이다. 그리고 소농은 세계의 모든 먹을거리를 식탁에 가져오기 위해 사용된 자원 -토지, 물, 화석연료를 포함하여- 의 25% 미만을 활용해 이러한 먹을거리를 생산한다. 


2. 산업형 먹이사슬은 세계 농업 자원의 최소 75%를 사용하는 주요한 온실가스 배출원이지만, 세계 인구의 30% 미만에게 먹을거리를 제공한다. 


3. 소비자가 먹이사슬 소매업체에 1달러를 지불할 때마다, 사회는 먹이사슬이 미친 건강과 환경의 피해에 2달러를 지불한다. 먹이사슬에 직간접적으로 지불한 총비용은 정부의 연간 국방비의 5배에 이른다.


4. 먹이사슬은 기후변화에 민첩하게 대응하지 못한다. 그 연구개발은 세계 식품시장에 집중되면서 왜곡되었을 뿐만 아니라 쇠퇴하고 있다.


5. 소농의 먹이그물은 식물, 가축, 물고기, 숲에 이르기까지 먹이사슬이 활용하는 생물다양성의 9-100배를 조성한다. 소농은 기후변화에 대응하기 위해 필요한 지식, 혁신적인 에너지, 연결망을 보유하고있다. 그들은 운영할 수 있는 범위와 규모를 지니고 있다. 그리고 그들은 기아와 영양부족에 가장 가까이 있다.


6. 우리의 먹을거리 체계에 관하여 우리가 모르는 것을 알지 못하는 부분이 아직 많이 있다. 때때로 먹이사슬이 알고 있지만 이야기하지 않는다. 다른 때에는 정책입안자들이 찾지 않는다. 대부분 우리는 소농의 먹이그물에 있는 다양한 지식 체계를 고려하지 않는다. 


7. 결론: 적어도 39억 명의 사람이 기아나 영양불량 상태이다. 이는 산업형 먹이사슬이 너무 왜곡되고, 너무 비싸며, –70년이나 노력했으나– 세계를 먹여살리기 위해 규모를 확대할 수 없기 때문이다.



우리에게 무엇을 의미하는가...? 


먹을거리: 식량작물, 가축, 물고기(먹을 수 있는 바다 또는 민물 종을 뜻함), 사냥하거나 채집한 먹을거리, 도시와 근교(peri-urban)에서 기른 먹을거리(주로 작물과 가축)를 포함한다. 먹을거리는 무게, 칼로리(에너지) 또는 영양이나 상업적 가치로 측정되곤 한다. 그러나 먹을거리는 시간과 장소로도 측정되어야 한다. –예를 들어 수확하기 몇 주 전, 또는 “허리케인”의 계절 동안에는, 인기가 별로인 식물(이른바“구황작물”)이 먹을거리가 풍부한 시기의 몇 가지 고칼로리 먹을거리보다 생존에 더 중요하다. 경제학자들이 식량안보에 대한 여러 먹을거리의 기여를 기술할 때 생산된 먹을거리의 양을 말하는지 소비된 부분을 기술하는지, 그리고 생산된 먹을거리가 생물연료와 사람에게 가는 가축이나 물고기의 사료로 취급되는지 불분명할 때도 있다.


기술 용어: 기술적 언어는 쓰지 않으려 노력했지만 어쩔 수 없을 때도 있다. 설명과 훨씬 더 기술적인 세부사항은 출처&주석 부분에서 이용할 수 있다.


자원: 먹을거리는 보호해야 하는 유전(육종) 자원, 토지, 토양, 물, 수분매개자를 필요로 한다. 적절한 햇빛, 깨끗한 공기, 안정적인 기후처럼 농업 생산에 필요한 매우 기본적인 자원은 산업형 체계와 기후변화로 위협을 받는 자원이기도 하다. 또한 먹이사슬은 합성 비료, 화석연료, 농화학물질, 농기계 같은 재생할 수 없는 자원을 필요로 하기도 한다.


기아 & 영양불량: UN에서는 공식적으로 7억9500만 명이“기아”라고 추산한다. –충분한 칼로리를 얻지 못하거나, 그런 칼로리에서 적절한 양분을 얻지 못한다는 뜻이다. 이는 세계 인구의 10%가 기아라는 뜻인데, 지금까지 기록된 가장 낮은 퍼센트이기도 하다. 그러나 39억 명(52%)가 영양부족에 시달리고 있다고 추산되었다. 전통적 의미에서 기아인 사람들 이외에, 이 숫자에는 칼로리는 충분하지만 영양 결핍과 손상(미량양분, 비타민이나 단백질 부족) 또는 과다섭취로 인한 건강 악화로 고통을 받고 있는 많은 사람들이 포함된다. 이웃이나 먹이사슬에게 서비스와 노동력을 제공하는 많은 소농과 농업노동자가 기아와 영양불량에 시달린다는 건 비극적인 역설이다. 먹을거리가 가득한 세상에서 우리 중 절반 이상이 계속해서 필요한 먹을거리를 얻을 수 없는 상태이다. 가장 비극적인 건 영양불량인 사람들의 구체적 숫자와 퍼센트가 계속 늘어나고 있다는 점이다. 


기아는 구조적이고 역사적인 원인이 있다. 세계의 가장 유명한 기근인 1840년대 아일랜드, 1940년대 벵갈, 1930년대 소련, 1950년대 중국, 현재 예멘과 남수단의 사례는 정치와 투기 때문이거나 둘 중 하나 때문에 일어났다. 만성적 기아는 희토류의 콩고부터 석유가 풍부한 앙골라와 나이지리아까지 자원 부국의전염병이다. 토지수탈은 아프리카 서부의 땅콩부터 아프리카 동부의 꽃까지 모든 것을 수출하면서 외국인에게 대륙 최고의 토양을 양도하여 농업과 목축을 불안정하게 만들었다.


소농의 먹이그물: 우리는 이 언어를 농민, 축산업자, 목축인, 사냥꾼, 채집인, 어부 및 도시와 근교의 생산자를 포함하여 대개 가족이나 여성이 주도하는 소규모 생산자를 기술하려 채택했다. 우리의 정의는 자신의 생산 자원을 통제하는 사람뿐만이 아니라, 다른 사람을 위해 먹을거리를 생산하고 공급하고자 일하는 사람들과 자신의 땅을 잃어버린 사람을 포함한다. 계절과 기회에 따라 소농은 어부만이 아니라 사냥꾼과 채집인이 되기도 하고, 도시의 소농은 양어지와 작은 가축만이 아니라 농외취업을 할 수도 있다. 소농은 환경과 사회경제적 이유로 먹을거리 생산과 도시의 직업 사이를 오갈 수 있다. 소농이 항상 자급할 수는 없고 때로는 먹이사슬에서 먹을거리를 구매하기도 하며 그 반대도 사실이라는 걸 기억하는 게 중요하다. 그들이 자신의 먹을거리를 모두 재배하든 그렇지 않든, 이웃들과 거래하고 지역의 시장에 잉여농산물을 판매한다. 소농이 어려운 조건에서 모든 걸 재배하면서 종종 영양불량 상태가 되지만, 여전히 거래하기 위한 먹을거리를 가질 수 있다. “소농(Peasant)”은 때로는“토착민”을 뜻하는데, 우리는 토착민이 자신의 정체성을 가지고,자신의 생계와 먹을거리 체계를 정의한다는 걸 인정한다. 소농의 먹이그물에 포함되는 사람들의 범위와 생계를 적절하게묘사할 단어가 없다.


먹이그물은 농생태학, 유기농업, 퍼머컬쳐 또는 기타 생산 체계에 대한 가명이 아니다. 식량 생산 과정에 채택된 유기농업은 식량안보에 더 가깝지 식량주권에 가깝지 않다. 소농은 윤리적, 경제적 환경적 또는 접근성의 이유를 가지고 합성 비료나 농약에 관하여 자신이 스스로 결정한다. 어떤 이는 상업적 생산에 화학물질을 사용하지만 자신이 소비할 것에는 피한다. 그럼에도 불구하고 소농이 생산하는 많은(또는대부분의) 것은 사실상“유기농”이다. 

산업형 먹이사슬: T산업형 먹이사슬은 생산 투입재부터 소비 결과물로 이어지는 일련의 직선형 고리이다. 먹이사슬의 첫 번째 고리는 작물과 가축의 유전자이고 농약, 수의학 의약품, 비료, 농기계가 그 뒤로 이어진다. 거기에서 먹이사슬은 운송과 저장으로 이동한 다음, 제분 가공 및 포장으로 이어진다. 먹이사슬의 마지막 고리는 도매와 소매이고, 최종적으로 가정이나 식당으로 배달된다. 이런 맥락에서 먹이사슬을 설명하고자  ‘산업형’ 또는 ‘기업형’ 이란 말을 사용하고, ‘상업적 먹을거리’는 의심의 여지 없이 먹이사슬과 연관되어야 한다. 소농은 그들의 문화적, 생태적 문맥 밖에서 이해될 수 없듯이, 먹이사슬에서 고리 –농업 투입재부터 먹을거리 소매업체– 는 시장경제 안에서 이해해야 한다. 먹이사슬에서 모든 고리는 은행, 투기꾼, 규제기관, 정책입안자를 포함하는 금융과 정치 체계 안에서 연결되어 있다.  먹이사슬은 세계의 가장 중요한 자원인 우리 먹을거리의 정책 환경을 통제한다. 

산업형 먹이사슬 & 소농의 먹이그물에 대한 질문 


1. 대개의 사람들은 먹을거리를 어디에서 얻는가? 


ETC Group은 인구의 약 70% –세계의 75억 인구 가운데 45–55억 명– 가 자신의 먹을거리 대부분 또는 전부를 소농의 먹이그물에 의존한다고 추산한다.


여기에는 다음과 같은 집단(겹치기도 하는)이 포함된다:

35억의 농촌 인구 거의 모두(주로 요리용 연료로 바이오매스에 의존하는 27억 명을 포함). 여기에는 북반구의 수백만 소농과 지역사회와 공유하는 농업 또는 어업 협동조합의 그 동맹들도 포함된다.

10억 명으로 추산되는 도시의 먹을거리 생산자(텃밭, 물고기와 가축).

자신의 먹을거리와 생계를 위해 낚시나 소규모 어업에 의존하는 전 세계 8억 명의 사람들 대부분.

결핍의 시기에 주기적으로 먹이그물로 전환하는 몇 억 이상의 사람들.


이 추산은 건강과 생계에 기여하는 먹이그물의 중요성을 매우 과소평가한 것이다. 먹이그물이 보호하는 농업생물다양성은 수확 직전 결핍의 시기에 주기적으로 "구황작물"을 찾는 농촌 인구의 생존으로 이어지며,  먹이사슬이 닿지 못하거나 형편이 어려운 지역의 어머니와 아이들이 몇 주나 몇 달 동안 계속되는 결핍의 시기에 먹을거리를 얻을 수 있다. 가장 열악한 시기에 취약계층 대부분에게 먹이그물의 중요성은 먹이그물의 칼로리 기여도를 계산하는 것보다 훨씬 중대하다. 

2. 누가 대부분의 먹을거리를 생산하는가?


먹이그물은 인류의 70%를 먹여살릴 뿐만 아니라, 칼로리와 무게에서 이용할 수 있는 세계의 먹을거리 가운데 약 70%를 생산한다:

개발도상국의 소농은 인간이 소비하는 세계의 작물 칼로리 가운데 53%를 수확한다(예를 들어 벼의 80%, 땅콩의 75%).

세계적으로 도시농업은 전체 육류 생산의 34%와 달걀 생산의 70%를 포함하여, 도시 지역에서 소비하는 먹을거리의 15%를 제공한다.17 도시농업은 앞으로 20년에 걸쳐 2배로 성장할 것이다. 25억 명(개발도상국의 거의 모두)이 자신의 먹을거리 가운데 일부나 전부를 일반적으로 소농에게서 공급을 받는 노점에서 얻는다.

영세어업이 세계 어획량의 25%를 잡는다.

최소한 식량작물과 가축 생산의 77%가 여전히 그를 수확한21 국내에서 소비되고, 이런 먹을거리 가운데 대부분(OECD 국가를 제외하고)은 먹이그물 안에서 얻는다.


이 책의 예전 판에서 우린 먹이그물이 먹을거리의 70%를 생산한다고 추산했는데, 이는 여전히 공정하고 보수적인 추산이다. 그러나 정확한 계산은 포괄적인 자료가 없기에 불가능하다. ETC의 70%라는 추산은 2009년에 논란이 되었지만 지금은 유엔의 전문가, 학계 및 산업계에서 널리 받아들여지고 있다. 이 책자의 말미에 70%라는 수치를 받아들이는 사람들의 요약이 포함되어 있다. 



3. 먹이사슬에 의해 생산된 모든 먹을거리는 어떻게 되는가?


먹이사슬은 사라지지 않을 방대한 양의 먹을거리를 생산한다. 인구의 30% 미만이 그것을 어떻게 섭취하는가? 


아래 수치는 먹이사슬에서 매년 수확한 총 칼로리이다.

먹이사슬 작물 칼로리 가운데 육류 생산에서 ‘낭비된다.’: 먹이사슬 작물 칼로리의 50% 이상은 가축 사료로 사용되는데, 그 칼로리의 약 12%만(또는 총 칼로리의 6%) 사람의 먹을거리로 전환된다.

먹이사슬 작물 칼로리의 또 다른 9%는 생물연료나 기타 먹을거리가 아닌 산물이 된다.

먹이사슬 칼로리의 최소 15%는 운송과 보관, 가공 과정에서 상실된다.

먹이사슬 칼로리의 약 8%는 가정에서 낭비된다.

즉, 먹이사슬의 총 칼로리 가운데 76%는 그릇에 담기기 전에 낭비되며, 24%만 사람들이 먹게된다는 뜻이다. 


게다가 먹이사슬의 칼로리 가운데 대부분은 섭취해도 건강과 안녕에 기여하지 않는다. 일부 추산에 의하면, 사람들이 먹는 먹을거리의 1/4(칼로리가 아니라 무게)은 과소비되어 사람들을 아프게 만든다. 만약 우리가 (보수적으로) 먹이사슬 칼로리 가운데 최소 2%가 건강에 해롭다고 추산하면, 그건 먹이사슬의 생산 가운데 적어도 78%가 낭비되거나 과소비되고 단 22%만이 사람들에게 영양을 공급한다는 뜻이다.


먹이사슬 먹을거리가 “소멸”하는 걸 계산하는 건, 음식물쓰레기의 문화적 이해와 잡식성 또는 초식성 식단을 고려하느냐에 따라 달라진다. 먹이사슬 먹을거리의 30%만 먹는 이유는 세계의 절반인 농촌의 빈곤층이 너무 멀리 떨어져 있고 가난하여 많은 먹이사슬의 소매상이 이윤을 얻지 못해서이다. 

4. 농업 자원을 누가 사용하고 있는가?


먹이그물은 70% 이상의 사람들에게 영양을 공급하는 먹을거리를 재배하기 위해 농경지의 25% 미만을 사용한다(위기에 처한 20억 명의 사람들에게 가장 많이 제공하고 있음. ETC는 먹이그물이 농업의 화석 에너지 가운데 약 10%, 농업의 전체 수자원 요구량 가운데 20% 이하를 차지하는 것으로 추산한다. 이는 먹이사슬보다 토양과 숲에 미치는 피해가 훨씬 적은 것이다. 


먹이사슬은 세계 농경지의 75% 이상을 사용하고, 그 과정에서 매년 750억 톤의 겉흙을 파괴하며 750만 헥타르의 숲을 벌목하여 시장 환경을 조절한다. 또한 먹이사슬은 농업의 화석연료 사용(그리고 온실가스 배출) 가운데 최소 90%를, 담수 사용의 최소 80%를 차지하며, 우리에게 12조 3700억 달러어치의 청구서를 남긴다(먹을거리와 피해의 항목으로). 또 39억의 인구를 영양부족이나 영양불량의 상태로 남겨둔다.



Box 1: 농생태학 vs 기업식 농업


소농의 농업은 믿을 수 있고 탄력적이다. 정상 또는 비정상적인 연도에, 비옥하거나 척박한 토양에서, 여성과 남성이 다양한 작물과 양어지, 가축을 기르면서 산업형 농장보다 면적당 더 많은 먹을거리를 생산할 것이다. 농생태학의 전략을 사용하면, 먹이그물은 사람과 지구에 대한 위험을 줄이면서 꾸준하게 더 많은 걸 생산할 것이다. 


정상적인 연도에는 먹이사슬이 충분한 자금과 농기계, 노동력, 비옥한 토양, 다수확 품종 또는 상업 작물, 가축 종이나 대규모 어업을 활용하여 소농이 육종한 똑같은 종보다 면적당 상업적으로 더 많은 양을 생산할 수 있을 것이다. 그러나 최근 수십 년 동안 먹이사슬의 주요 네 작물(먹이사슬 작물 칼로리의 총 57%를 차지하는 옥수수, 벼, 밀, 대두)의 수확량이 정체되었다.


먹이사슬의 작물에서 일어나는 유전적 획일성이 1970년 미국에서 파괴적인 옥수수깨씨무늬병을 발생시켰다. 새로운 밀 녹병이 아프리카와 전 세계의 작물을 위협하고 있다. 검은 시가토가는 유전적으로 획일적인 바나나 플랜테이션을 파괴하고 있다. 툰그로(Tungro)와 멸구 감염이 동남아시아의 벼를 파괴했다. 커피부터 오랜지와 고무나무에 이르기까지 그 획일성으로 인해 놀랄 정도로 취약해졌다. 먹이사슬 이전에, 유전적 획일성은 1840년대 아일랜드의 감자 기근을 일으켜 100만 명이 죽고, 또 다른 100만 명은 이주하게 만들었다.


그럼에도 불구하고 먹이사슬은 공공 및 민간 부문의 연구 자금으로 500억 달러의 지원을 받는다. 소농의 참여 연구나 농생태학에 대한 자금 지원은 거의 없는데, 먹이사슬의 연구개발비의 1% 미만이다. 민간 부문에 대한 공공의 연구개발 지원을 줄이는 한편, 그 자금을 농생태학 분야로 옮기는 것이 인류와 지구 모두에게 이익이 될 것이다.



5. 누가 우리의 식량작물을 육종하는가?


소농은 작물 7000종의 210만 가지 품종을 육종하고 (국내와 국제 유전자은행에) 기증했다. 소농의 씨앗 가운데 80-90%는 갈무리되고 나누어지거나 지역에서 거래되었다(먹이사슬로부터 구매하는 것이 아님). 기후변화에 적응할 때 중요한 건, 공짜로 소농이 작물의 씨앗을 보호하고, 때때로 5만-6만 가지의 야생 근연종과 교배시키는 일이다. 그 잠재적인 경제 가치는 1960억 달러에 이른다. While 이들 종의 대부분은 사소한 작물이지만, 필수적인 “구황식품”이 될 수 있는 국가나 생태계에서는 중요할 수 있다. 실제로 식량농업기구나 국가의 식품 통계에는 잡히지 않는다.


먹이사슬에서는 매우 적은 수의 작물을 육종하는 데 많은 돈이 사용된다. 상업적 육종가들은 독점적 통제 하에 10만 가지 품종을 소유하지만, 예를 들어 유럽연합에서 판매되는 56%는 먹을거리가 아니라 화훼(예; 장미, 국화)이다. 상업적 육종가들은 실제로 137가지 작물 종만 가지고 작업하는데, 이 중 단 16가지가 세계의 식량 생산 가운데 86%를 차지한다. 사실, 옥수수라는 한 가지 작물에 민간의 전체 연구개발비 지출 가운데 45%가 들어간다. 또 먹이사슬의 육종은 비용도 많이 든다. 한 유전자변형 품종이 시장에 출하되려면 1360억 달러의 비용이 든다.

6. 누가 우리의 가축과 어류를 육종하는가?


소농은 적어도 34가지 가축 종을 길들였고, 이러한 종 가운데 8,774가지 이상의 희귀한 품종을 계속 사육하고 육종하고 있으며, 먹이사슬이 현재 상업화시킨 동물 대부분을 원래 육종했다. 이러한 다양성을 가축으로 가계소득의 33-55%를 벌고 있는 6억4000만 명의 소농, 1억9000만 명의 목축인, 10억 명의 도시농부들이 지킨다. 도시농부의 66%는 여성이다. 소농이 어업을 보호하고 있지만 육종에 대한 그들의 역할에 관한 정보는 거의 없다.


한편 먹이사슬은 거의 독점적으로 가축 다섯 종에 집중한다–소(고기&젖), 가금류(고기&알), 돼지와 양(고기&양모), 염소(젖&고기). 이는 총괄하여 원래 소농이 육종한 거의 모든 품종 가운데 100가지 미만의 상업적 품종에 국한된다. 오늘날 7개 미만의 기업 육종가들이 가축의 유전자를 지배하고 있으며, 거의 모든 상업적 가금류와 돼지 품종은 2-3개의 기업이 통제하고 있다.


이와 마찬가지로, 7개의 대형 가축 유전자 기업 가운데 5개가 어류의 유전자로 넘어갔고, 주요한 해양 종의 육종은 2-5개 기업이 지배한다. 수만 가지의 해양 생물종을 이용할 수 있음에도, 먹이사슬은 25가지 종에 연구개발을 집중한다. (더 많은 이야기는 8번 질문에서) 



7. 누가 가축의 건강을 돌보는가? 


소농과 목축민은 엄청난 탄력성과 저항성을 지닌 가축을 육종하고 보호한다(예를 들어, 물이 없거나소금물을 마시지 않고 14일을 생존하는 낙타, 해초를 소화시키는 양, 질병에 면역이 있거나 극한의 기후에 견딜 수 있는 기타 품종). 소농은 현지의 자원을 중심으로 구축된 특유의 민족-수의학 관행에 의존하곤 한다.


먹이사슬에서는 가축의 취약성이 거대한 산업을 창출했다. 세계의 동물 의약품 판매액은 연간 총 239억 달러이고, 10개 기업이 시장의 83%를 통제한다. 그런데 모든 인간의 전염병 가운데 60%는 유전적으로 획일화된 가축을 통해 전염된다(예를 들어 조류 인플루엔자). 먹이사슬은 다양성과 토착 품종을 활용하는 대신 자신들의 유전적으로 획일한 품종을 보호하기 위해 토착 가금류와 돼지를 없앤다. 한국-중국 이니셔티브는 중국에 연간 10만 마리의 복제된 소를 선적하는 걸 목표로 한다.


일부 금지에도, 여전히 가축의 성장촉진제로 항생제가 사용된다. 정부는 남용을 없애겠다고 약속했지만, 미국에서는 2009-2014년 사용량이 23% 증가했다. 항생제 내성에 드는 비용이 연간 550억 달러이다. 너무 늦었지만 현재 정부는 항생제 내성을 기후변화만큼 위협적인 것이라 인정한다.



8. 누가 우리의 수산업을 지키는가?


8억 명의 소규모 어부가 15,000의 민물종과 20,000의 해양종을 수확한다. 소소규모 어부의 지속가능한 기술이 세계 해양 어획량의 25%를 수확한다. 어류 가공 일자리의 90%에 여성이 종사하는데, 이들이 물고기에서 단백질의 1/5을 얻는 세계 30억 이상의 사람들이 영양을 섭취하는 데 중요한 역할을 한다(물고기를 소고기보다 더 중요한 단백질 공급원으로 만들고 있음).


먹이사슬은 1,600의 해양종을 잡고 기타 500의 종을 "양식한다." 그러나 그렇게 잡는 해양종의 40%는 23가지 종으로 구성되어 있으며, 양식 생산은 단 25가지 종에 국한된다. 먹이사슬이 다양성을 활용하는 폭은 좁지만, 그 영향력은 광범위하다. 해양 어류의 91%가 과도하게 개발되거나 최대로 착취되었으며, 1970년대 이후 해양 어류의 개체수는 39% 감소하고 수확된 담수어종의 개체수는 76%나 줄어들었다. 이 때문에 새로운 어업 기술에도 불구하고 어부들이 1시간 물고기를 잡으면 과거 120년 전에 했던 것에 비교하여 단 6%만 낚아올린다.


먹이사슬의 해양 어업 가운데 약 25%는 불법이며 보고되지 않는다(연간 100-240억 달러어치). 사실 전 세계 어획량의 40%를 차지하는 28개국이 FAO의 어업 규정을 일상적으로 어기고 있다. 세계 무역의 50% 이상에 맞먹는 적어도 연간 500억 달러가 어업의 부실관리 때문에 손실된다. 미국의 상점과 식당에서 판매된 해산물의 1/3이 잘못 표기되어 있다. 그럼에도 불구하고 정부는 상업용 저인망 어선에 연료 보조금과 저렴한 보험료로 연간 350억 달러를 지원한다. 상업용 해산물 산업은 맹렬한 속도로 집중화되어, 오늘날 10개 기업이 세계 시장의 25% 이상을 차지하고 있다.

9. 먹을거리 다양성에 무슨 일이 일어나고 있는가? 


소농이 주도하는 작물과 가축 육종은 식량안보와 영양이라는 두 측면에서 다양성을 촉진한다. 씨앗의 선발과 육종에 많은 역할을 하는 여성은 특히 영양과, 씨앗과 음식의 보전, 요리의 특성을 향상시키는 데 초점을 맞춘다. 다양화된 농생태학 농법은 종 사이의 시너지 효과를 최대화하는 데 기반을 둔다.

예를 들어 케냐의 옥수수와 목초를 섞어짓기하는 밀당 농법은 우유와 옥수수의 생산량을 2배로 늘리고, 방글라데시의 오리농법은 5년 안에 벼의 생산성을 20%까지 높였다.


1961년 이후 먹이사슬이 통제하는 시장에서, 가공업자와 소매업자가 선호하는 종의 숫자에는 36%의 “내부 폭발(implosion)”이 있었다(조, 콩, 덩이줄기 종류는 더 적게, 옥수수와 대두, 샐러드용 채소는 더 많이). 이러한 종들이 사라지지는 않았지만, 그 쓰임새는 시들해졌다. 종 안에서 식물의 육종을 위해 과학적으로 이용할 수 있는 유전적 다양성은 75%가 상실되었다. (종과 마찬가지로, 유전적 다양성은 멸종되는 것이 아니라 일반적인 쓰임에서“사라짐”으로써 소수의 농장에서만 발견될 수 있다.) 종과 유전자의 상실 외에도, 먹이사슬이 육종한 품종의 영양적 특성은 종에 따라서 5-40% 감소했다(예를 들어, 더 달고 영양이 더 적은 옥수수와 과일 및 채소 등).



10. 누가 농업 투입재를 통제하는가? 


먹이그물은 주로 지역의 투입재를 활용한다. 지역에서 육종된 작물과 가축의 품종과 거름 및 지속가능한(전통적이기도 한) 해충 방제 기술을 지역사회에서 공유했다. 소농이 사용하는 씨앗의 약 90%가 그들의 씨앗 갈무리를 통해서, 또는 지역 시장에서 이웃과 교역한 것이다.


먹이사슬은 410억 달러 규모의 상업적 종자시장에 의존하고, 그 시장은 세 기업(몬산토, 듀폰, 신젠타)이 55%를 통제한다. 산업형 농민은 630억 달러 규모인 전 세계 판매액의 51%를 통제하는 세 기업(신젠타, 바스프, 바이엘)에게서 유전자변형 작물용 농약의 구입을 의존한다. 20년 전 유전자변형 종자가 도입된 이후 소규모 종자회사를 인수합병한 사례가 200건 이상이며, 현재 진행중인 대규모 합병 건이 이루어진다면 세 개의 살아남은 거대 기업이 상업형 종자의 60%와 농약의 71%를 독점하게 된다. 이는 제초제 저항성 유전자변형 식물 품종을 위해 결합된 시장에 대한 통제권을 그들에게 부여할 것이다.



11. 누가 우리의 숲과 임산물을 보호하는가?


소농의 생계는 8만 가지 숲의 종에 달려 있으며, 27억 명이 땔감으로 요리를 한다. 이들 가운데 10억 명 이상이 공식적인 “보호구역”중 5억1300만 헥타르를 먹을거리와 생계를 위해 활용한다. 전체적으로 개발도상국의 80%가 목재와 연료, 먹을거리, 의약품, 옷감과 도구를 위해 숲을 돌본다. 최근의 한 조사에 과테말라와 볼리비아, 브라질의 토착민이 정부보다 “보호구역을 지키는 데 6-22배 더 효과적이라는 사실이 밝혀졌다.


세계에서 가장 빠르게 숲을 밀어버린 인도네시아에서는 소농이 산림 벌채로 비난을 받고 있지만, 그러한 일의 약 90%가 대형 다국적 식품가공업자에게 판매하기 위한 대형 민간기업 때문에 발생한다. 라틴아메리카에서는 산업형 축산업이 증가하며 숲이 사라지는 원인의 71%를 차지한다.


먹이사슬-그리고 정부-는 주로 제대로 보고하지 않음으로써 숲을 감시하는 끔찍한 일을 저질러 왔다. 

UNEP에 의하면, 상업적 열대 목재 벌목의 50–90%가 불법이거나 제대로 보고되지 않는다.

위성은 아마존의 바이오메스를 25%까지 계산 착오를 일으켰다.

1990-2010년 사이, 열대의 숲 상실율은 주장처럼 25% 늦추어지지 않고 62% 가속화되었다.

과학은 최근에야 열대 수목의 평균수명이 1980년대 이후 33% 감소했다는 사실을 알게 되었다. 나무들이 더 빨리 자라지만 더 금방 죽어가고 있다.

이러한 계산 착오는 1990년대 이후 아마존에 저장된 탄소의 양이 연간 20억 톤에서 10억 톤으로 감소했다는 것을 뜻한다.

12. 누가 우리의 토양을 지키는가?


소농의 토지 가운데 1/2 미만에서 약간의 합성 비료를 사용한다.


일반적으로 소농은 이른바 작물 폐기물이라 부르는 거름과 연간 700-1억4000만 톤의 질소를 고정시키는 토양 미생물을 활용하는데, 900억 달러의 질소비료 판매액에 맞먹는다. 소농은 방풍림, 질소고정 및 깊은 뿌리의 작물 또는 유축복합 체계 등과 같은 자신만의 토양 보호 전략이 있다. 소규모 어부는 생물학적으로 다양하고 가치 있는 망그로브 생태계, 해초 목초지, 이탄 지대를 보호한다.


이와 대조적으로, 먹이사슬은 연간 750억 톤의 토양 손실을 유발하며, 이는 4000억 달러 규모의 피해액이다. 먹이사슬은 전 세계 농경지의 75% 이상을 점유하며, 세계의 합성 비료 대부분을 사용하여 이로 인해 연간 3650억 달러의 환경 피해가 발생한다. 합성 비료 산업의 연간 판매액은 1750억 달러이다 – 1달러어치의 비료를 쓸 때마다 4달러어치의 토양 및 환경 피해가 발생한다. 합성 비료의 절반만 작물에 이르며, 먹이사슬은 폐기물을 줄이기 위한 유인책이 하나도 없다.


먹이사슬의 합성 비료 가운데 80%는 가축에게로 이동하며, 먹이사슬의 농경지 가운데 80%는 가축 생산에 사용된다. 먹이사슬은 인구와 부의 증가로 육류와 유제품 수요가 2050년까지 70% 증가할 것이며, 이를 위해서는 경작할 수 있는 모든 토지가 필요해 인간의 소비를 위하여 활용할 직접적인 토지가 남지 않을 것이라 경고한다. – 새로운 기술을 알맞게 사용하지 않으면 말이다. 



13. 누가 위협을 받고 있는 작물의 수분매개자와 미생물을 돌보는가?


먹이그물에서 2만 종 이상의 벌과 기타 곤충 및 새와 박쥐를 포함한 야생의 수분매개자가 토착민과 소농이 수렵과 채집을 하는 동일한 서식지에 살기 때문에 부분적으로 보호를 받는다. 이러한 수분매개자는 세계의 주요한(종종 산업의) 식량작물 가운데 75%의 수분을 책임지기도 한다.


먹이사슬은 자연의 수분매개자를 파괴하고, 현재 그 작물의 1/3은 값비싼 상업용 벌통에 의존하고 있다. 연간 2350–5770억 달러에 이르는 생산성이 살충제 남용과 관련된 수분매개자 군집 붕괴로 인해 위협을 받고 있다. 먹이사슬의 해결책은 작물을 불임으로 만들어서 수정이 필요하지 않게 하는 “터미네이터” (유전자 편집) 기술이다(하지만 농민은 파종 때마다 새로운 종자를 구매해야 할 것이다).


살포한 농약의 1-5%만 목표로 한 해충에게 작용하여 생태계를 철저히 손상시키고 우리의 건강을 위태롭게 만든다.


합성 비료와 농약과 결합하여 유전적으로 획일화된 작물과 가축이 이로운 농업 미생물을 제거하여, 토양을 손상시키고, 사료 효율성을 떨어뜨리며, 동물을 취약하게 만들었다. 비료의 질소 침적은 습지를 이루는 물이끼를 죽임으로써 이탄 지대의 탄소 저장력을 감소시킨다.


이러한 대량 생산 전략은 인간과 동물에게 항생제 사용을 가속화시켜 인간과 가축 미생물군의 박테리아 다양성을 감소시키며,신체와 정신 건강에 문제를 일으킨다고 여겨진다.



14. 누가 우리의 물을 낭비하는가?


소농과 토착민은 생명에게 얼마나 물이 중요한지 알고 있으며 빗물 집수(관개의 필요성을 50%까지 감소시킴)와 물의 가용력을 20% 높이는 작물 돌려짓기 같은 전체론적 방법을 사용해 왔다. 유기농 농지에서 먹이사슬의 농지보다 4배 적은 질산염이 지하수로 침출된다.


농업은 세계 담수의 70%를 사용하지만 먹이사슬이 관개와 축산, 가공을 통해 그 대부분을 빨아들인다. 주요 대수층의 1/3이 위험에 처해 있고, 약 2/3는 고갈되고 있다. 가축 생산에만 우리의 물 사용량 가운데 27%가 쓰인다. 먹이사슬의 육류에 대한 초점은 채소에서 얻는 칼로리보다 5배나 더 많은 물을 필요로 하는 동물성 칼로리를 생산한다는 것을 뜻한다. 코카콜라의 물발자국(직간접direct and indirect)은 20억 인구의 개인적 필요를 충족시키기에 충분하다.


먹을거리 체계의 세계화는 우리가 먹는 먹을거리에 다른 나라의 물을 사용한다는 걸 뜻한다(예를 들어, 영국의 먹을거리 관련 물 사용량의 75%는 국외의 것이다.)



15. 누가 더 많은 화석 탄소를 필요로 하는가?


먹이그물은 똑같이 벼 1kg을 생산하기 위하여 먹이사슬보다 9배나 에너지를 덜 사용하고, 옥수수는 3배 덜 소비한다. 전반적으로, 먹이사슬은 1kcal의 먹을거리 에너지를 생산하려면 10kcal의 에너지가 필요한데 반하여 소농은 1kcal의 먹을거리 에너지를 생산하려면 4kcal의 에너지가 소요된다.


기후변화에도 불구하고 먹이사슬은 합성 비료를 생산하고자 세계의 연간 천연가스 공급량의 3–5%를 계속 사용하고 있다. 62리터의 화석연료가 질소비료(헥타르당)를 생산하고 유통하는 데 사용된다. 먹이사슬이 밀을 재배하는 데 사용하는 에너지의 50%는 작물의 비료와 살충제를 제조하는 데 쓰인다. 평균적인 미국인은 식탁에 먹을거리를 올리기 위하여 연간 2000리터에 버금가는 석유를 사용한다.

16. 누가 먹을거리를 “가공(processes)”하고 누가 “보존(preserves)”하는가?


“보존(Preserving)”은 먹을거리가 부족한 시기에 살아남기 위한 전략이다. 토착민은 먹이사슬이 진공밀봉법을 발명하기 오래전부터 알려진 거의 모든 보존법(건조, 훈연, 염장, 절임, 발효, 동결)을 발명했다. 소농과 토착민은 중요한 비타민과 미네랄을 확보하는 117가지 이상의 발효 전략을 개발했다. 개발도상국의 적어도 20억 인구가 소규모 가공에 의존한다.


먹이사슬의 목표는“보존”이 아니라 간편식에 적합하도록 먹을거리를 “가공”하는 것이다. 가공식품은 먹이사슬의 판매액 가운데 75%를 차지하며, 2002년 이후 92% 증가하여 연간 $2조 2000억 달러에 이르렀다.


미국의 가공업자는 60년 전 704가지의 식품첨가물을 사용한 것과 비교하여 현재는 3000가지를 사용한다. 이러한 첨가물은 우리가 그걸 먹으면 미생물을 계속하여 죽이며, 추가적으로 위장에 문제를 일으킬 수 있다. 이산화티타늄, 산화규소, 산화아연 같은 나노입자는 수백 가지 가공식품에 첨가되며, 적절한 안전규정 없이 점점 많은 양을 소비하고 있다. 상업적 가공은 지역의 시장을 해칠뿐만 아니라, 다양성을 감소시키고 건강에 좋지 않은 식사를 조장하여 비만을 야기하고 있다.


상업적 가공은 오염으로도 이어진다. 해양에 연간 약 800만 톤의 플라스틱이 유출되고, 그중 약 1/3은 먹이사슬에 의해 폐기되는 것으로 추산된다. 이 추세가 꺾이지 않으면 2050년쯤 바다에는 물고기의 무게보다 많은 플라스틱이 함유될 것이다.



17. 어디에 쓰레기가 있는가?


먹이그물에서 먹을거리 손실은 중대한 문제이다. 세계의 가장 빈곤한 지역(사하라사막 이남의 아프리카와 남아시아)에서는 가정에서 연간 1인당 6–11kg의 먹을거리가 버려진다. 이들 지역의 가정 이외에서는 먹이그물의 다른 부분에서 연간 1인당 120–150kg이 손실된다. 저장과 운송을 개선하는 데 최소한의 투자로 이러한 손실을  충분히, 그리고 신속히 줄일 수 있다. 이 먹을거리는 인간에게서는 손실되지만, 최소한 일부는 토양으로 되돌리거나 가축에게 먹이로 준다. 


먹이사슬에서 쓰레기는 심각하고 용서할 수 없을 정도이다. 먹이사슬의 농업 연구개발 가운데 5% 미만만 수확 이후의 손실을 다룬다. 먹이사슬이 연간 생산하는 40억 톤의 먹을거리 가운데 33–50%가 먹이사슬의 과정에서 버려지며, 비용으로 환산하면 연간 2조4900억 달러에 달한다. 평균적인 미국인이나 유럽인은 1년에 280–300kg의 먹을거리를 버린다. 미국에서만 연간 3억5000만 배럴의 석유와 40조 리터의 물이 결코 먹지 않는 먹을거리를 생산하면서 버려진다.


먹이사슬은 그 효율성에 자부심을 가지고 있지만, 합성 비료의 1/2만(심지어 농약은 훨씬 적음) 먹이사슬의 한쪽 끝에 있는 작물에 이르며, 그 먹을거리의 겨우 절반만 다른쪽 끝에서 소비될 뿐이라는 사실을 인정한다.



18. 우리가 소비하는 모든“먹을거리”가 필요한가?


공급 과잉을 이끄는 보조금 때문에 먹이사슬은 건강한 영양 섭취에 필요한 양보다 더 많은 먹을거리를 생산하고, 세계 인구의 30%(기아 인구 이상으로)를 비만이나 과체중으로 만드는 건강에 좋지 않거나 해로운 많은 먹을거리를 생산한다. 예를 들어, 미국인은 그들이 필요한 것보다 25% 이상 더 먹는다. 세계의 모든 사람들이 평균적인 미국인처럼 먹는다면, 10억 명의 인구를 더 추가하여 먹여살리는 셈이 된다. OECD 국가에서 비만으로 인해 평균수명이 약 10년 정도 줄어드는데, 이는 거의 흡연과 비슷한 영향이다. 비만의 영향으로 세계에서 연간 2조 달러의 비용이 든다.


먹이사슬은 과체중이나 비만인 인구를 2배로 늘려 2030년 40억으로 증가시키고, 당뇨 환자의 숫자는 2040년까지 50% 증가시킬 것으로 예상된다.



19. 먹이사슬 비용(Chain cost)은 무엇인가?


세계의 소비자가 먹이사슬에 지불하는 1달러마다, 우리는 먹이사슬이 파괴하는 것을 관리하는 비용으로 2달러를 지불한다. 우리가 결코 먹지 않는 “농지에서 수저까지의” 먹을거리 폐기물(먹이사슬의 전체 생산량 가운데 약 33%)만이 아니라, 우리가 과식하는 먹을거리(먹이사슬의 전체 생산량 가운데 약 17%)에 수반되는 비용이다. 먹이사슬의 전체 비용에는 소비자에게 직접 청구하는 것만이 아니라, 건강과 환경 파괴에 대해 정부와 사회에 간접적으로 요구하는 비용(먹이사슬이 먹을거리에 직접 청구하는 비용의 절반 이상과 맞먹음)이 포함된다. 또한 먹이사슬의 먹을거리 가운데 75%는 가공되고, 수상쩍은 가치가 있다. 우리는 먹이그물을 지원함으로써 사람들과 우리의 기후 및 수조 달러를 구할 수 있다. 


계산은 다음과 같다:

소비자가 연간 지불하는 직접 먹을거리 비용은 7조5500억 달러이다. 직접 먹을거리 비용에는 먹이사슬의 과정에서 손실되거나 폐기되는 2조4900억 달러190 와 과소비로 인한 1조2600억 달러의 비용이 포함되어, 둘의 총합은 먹을거리에 직접 지불한 비용의 절반 또는 3조7500억 달러이다. 직접 먹을거리 비용 이외에, 먹이사슬로 인한 사회, 건강, 환경에 대한 피해로 4조8000억 달러의 간접 비용이 추가로 포함되어, 실제 세계적으로는 12조3700억 달러에 이른다. 먹이사슬이 야기한 쓰레기, 과소비, 간접 피해의 비용은 8조5600억 달러에 달하여, 먹이사슬의 총 비용 가운데 69%가 비생산적이라는 뜻이 된다. 비교하자면, 먹이사슬의 실제 전체 비용은 세계의 연간 군사비의 5배에 해당한다. 이 모든 것이 인류의 30%를 먹여살리기 위함이다. 


그래도 이 수치는 유행성 인수전염병으로 인한 참사를 고려하지 않은 것이다. UNEP에서는 (야생을 포함한) 다양한 동물에게서 가축화된(유전적으로 획일한) 가축으로 전염되는 질병이나 먹을거리로 옮겨져 세계에 전염병이 발생하면 수조 달러의 비용이 발생할 수 있다고 한다.

BOX 2: 농업의 온실가스 배출


문제: 농경지부터 수저까지, 농업은 모든 온실가스 배출량의 44– 57%를 차지하며, 이 가운데 1/3은 가축의 생산에서 기인한다. 농업 부문의 배출은 세계가 막대한 온실가스 감축을 요구해도 2050년까지 35% 증가할 것으로 예상된다. 먹이사슬이 농지의 75% 이상을 차지하고서 대부분의 농기계와 비료, 농약을 사용하고, 대부분의 육류를 생산하기 때문에(육식은 채식보다 배출량이 거의 2배에 달함), 먹이사슬이 모든 농업 부문의 배출 가운데  85–90%를 차지한다고 추정하는 것이 적절하다. 이 추정에는 해마다 10억 톤의 이산화탄소를 방출하는 연료 보조금을 받는 저인망 어선이 포함되어 있다. 이에 반하여 작은 어선은 그 연료의 20%만 사용해서 똑같은 양의 물고기를 잡을 수 있다.


해결책: 소농의 먹을거리 생산을 우선시하고, 육류 소비를 줄이는 것이 올바른 방향으로 나아가는 큰 걸음이 될 것이다. (1)먹이그물은 배출을 줄이면서 식물에 기반한 건강한 식단을 제공하기 위하여 토지와 물, 가축 품종 및 미생물의 다양성을 양육하여 문화와 관행을 지킨다. (2)세계의 인구가 "온실가스 배출량 전망치"와 비교하여 육류 소비를 절반으로 줄인다면, 이것만으로도 세계의 전체 온실가스 배출량이 10% 줄어들고, 대기의 이산화탄소 농도가 30ppm까지 낮아져 2050년까지 대기의 이산화탄소 농도를 420ppm 이하로 유지할 것이다.



20. 누가 문화의 다양성을 장려하는가?


토착민이 우리가 활용하는 모든 먹을거리의 종을 발견하고, 보호하거나 길들이고, 육종하며 양육했다. 먹이그물은 농업에 내재되어 있는 문화의 다양성(다양한 앎의 방법)을 이해하고, 환경의 지속가능성을 보장한다. 문화의 가치는 생산과 소비, 그리고 우리가 지구를 존중하는 데에 영향을 미친다. 경제 전략으로서 다양성은 먹이사슬이 요구하는 획일성보다 언제나 충분히 먹을 만큼의 더 많은 품종과 가능성을 보장한다.


먹이사슬은 문화의 다양성을 시장 독점의 장애물로 간주하여 지구와 관련된 수천 가지의 다양한 방법을 기각시키며, 또 21세기에 세계의 7000가지 언어(그리고 문화) 가운데 3500가지가 손실될 것으로 예상되는 데에 기여한다. 남미 토양의 1/3이 그 토지에 대한 토착지식으로 접근할 수 있는 토착 언어를 사용하는 사람들로 채워지지 않으면 먹을거리와 환경의 안전보장은위협을 받는다. 남성들이 정복자의 언어를 배우면서 동식물과 먹을거리에 대한 여성의 상세한 지식은 사라졌다. 어머니 대지는 그것이 아버지 수컷을 위한 일이 아니었다면 우리를 도울 수 있었다. 


대규모 단작식 먹을거리 체계는 소농과 토지에서 소비자를 분리시키고, 우리의 먹을거리 선택과 풍습을 변화시키고, 다양성을 손실을 가속화한다. 먹이사슬은 우리의 기후와 생활환경 및 생계가 우리의 몸에 새롭고 다양한 영양을 요구하더라도 생활과 생산, 소비의 방식을 균질화시킨다. 빅데이터와 인공지능에 대한 말들이 많지만, 우리 세대는 그것이 얻는 것보다 생명을 지탱하는 더 많은 지식을 잃는 역사상 첫 세대가 될 것이다. 



21. 누가 생계와 인권을 보호하는가?


전 세계의 유기농 농장은 먹이사슬의 농장보다 30% 더 많은 생계를 제공한다. 일반적으로 유기농 농장의 노동자는 1인당 더 높은 소득을 창출한다. 세계적으로 26억 명 이상의 생계가 농업, 어업, 목축업에서 파생되며 개발도상국 가구의 적어도 2/3(종종 여성이 이끄는)는 먹을거리를 약간 키운다.


먹이사슬은 생계도 인권도 존중하지 않는다:

먹이사슬은 5000만 명의 노동자를 고용하는 이른바 "현대화된" 농장에 초점을 맞추기 위해 산업화된 국가에서 대부분의 가족농을 쓸어버리는 한편, 농촌의 가족을 도시로 몰아넣었다. 

먹이사슬은 남아 있는 소농과 농업노동자들을 농기계와 농약으로 인한 건강의 위험에 노출시켰다. 농약은 연간 300만 명을 중독시켜, 연간 22만 명을 죽음으로 몰아가고 있다.

로봇이 농업노동자를 제거하고 있다. 일본에서 먹는 밥 세 그릇 중 한 그릇은 이미 드론이 살포하고 있으며 2020년대 초반이면 논밭에 무인 트랙터와 콤바인이 운영될 전망이다.

미국 패스트푸드 노동자의 52%는 푸드스탬프에 의존한다. 저임금으로 인해 먹이사슬에 연간 70억 달러의 간접 보조금이 지급되는 셈이다.


먹이사슬의 노동 관행은 노예의 사례(예를 들어, 브라질의 사탕수수 생산과 태국과 방글라데시의 새우 양식)와 1억 명에 가까운 아동노동을 포함하여, 인권을 침해한다. ILO는 아동노동의 60%가 인도와 필리핀 같은 국가의 팜유와 사탕수수 플랜테이션 및 서아프리카의 코코아 농장을 포함하여 농업 부문에서 발생한다고 추산한다. 소농과 농업노동자에 대한 폭력은 사람들이 자신의 땅에서 쫓겨나고 씨앗을 저장하고 가족을 먹여살리기 위하여 범죄나 살인을 저지르면서 비극적으로 확대되고 있다. 



22. 누가 진짜로 혁신하는가? 


과점이 먹이사슬의 거의 모든 연결고리를 지배하며 혁신은 더욱 어려워지고 있다. 예를 들어, 먹이사슬의 농약 사용을 용인하지 않고 2000년에 70가지의 새로운 활성 농약 성분이 개발되었지만 2012년에는 28가지뿐이었다. 1995년 이후 새로운 살충제를 출시하는 데 드는 비용은 88% 증가했다.


왜 그런가? 연구개발에 투자하기보다는 혁신을 과장하는 홍보에 드는 비용이 더 적기 때문이다. 농화학 전공자들은 작물에 화학물질을 적응시키는 것보다 화학물질에 식물을 적응시키는 것이 (절반까지) 더 싸다는 걸 알고 있다. 미국에서 유전자변형 식물을 육종하는 데 1억3600만 달러가 드는데, 새로운 농약을 출시하는 데 2억8600만 달러가 든다.


역사는 사람들이 필요한 경우 자신의 먹을거리 전략에 빠르게 적용할 수 있다는 사실을 보여준다. 

실리콘 밸리의 용어로, 핵심은  “crowd-sourced diversity”이다.


현대의 운송과 통신 이전에, 아프리카의 소농은 100년 만에 대륙의 생태계 대부분에 새로운 종인 옥수수를 적응시켰다.

파푸아뉴기니의 소농도 100년 만에 망그로브 숲부터 산꼭대기까지 600개의 문화에 걸쳐 먹을거리와 사료로 고구마를 적응시켰다.

1800년대에 미국의 농민들은 21세기 전반에 걸쳐 기후변화가 예측되는 것과 유사한 재배환경에서 뉴욕부터 중서부까지 밀 품종을 적응시켰다.



23. 먹이사슬의 가정에 도전하지 않는 이유는 무엇인가?


먹이사슬이 세계를 먹여살리며 계속 그렇게 해야 한다는 가정은 우리가 농기업에 의해 지원되는 제한된 통계와 해석에 의존하기 때문에 별로 도전을 받지 않는다. 우리가 “늘 그렇듯이 농기업(agribusiness as usual)”은 막을 수 없다고 말하는 바로 그 순간, 시장의 현실과 시장점유에 관한 정보는 점점 더 공개되지 않는다. 1970년대 후반부터 개별 기업과 업계의 분석가는 더 비밀리에 증가했다. 이는 부분적으로 사업 분석가들이 데이터 자체가 더 많은 pro table과 소유권이 되어 통합되기 때문이다. 하지만 “독점적 사업 정보”의 범위는 확대되고 있다. –어떤 대가를 치르더라도– 기업은 대중이나 정치인이 그들이 알고 있는 것을 아는 걸 원치 않기 때문이다. 그 결과, 정책입안자는 육류와 유제품 소비의 '필연적인' 증가와 농화학물질의 필요성 같은 신화는 논의의 여지가 없으며, 감시 단체는 신화를 논박하기 위한 데이터에 접근할 수 없다는 걸 받아들이게 된다.


게다가 통계학자와 투자 분석가는 소농과 거의 이야기하지도 않는다. 이른바 빅데이터는 근본적인 작은 -또는 지역의- 데이터를 무시한다. 먹이그물에서 활용하는 전체론적 분석이 그것이다. 


정부와 업계의 자료는 믿을 수 없다. 전 세계 해양 어획량의 적어도 25%를 과소평가하고 있으며, 열대우림 벌목의 50-90%가 불법으로 이루어지기 때문에 사료작물과 가축으로 인한 산림벌채에 심각한 계산 착오를 일으키고 있다. 또한 먹이사슬의 가장 큰 기업들은 그들의 수치를 일상적으로 점점 더 날조하고 있다. Economist 지 는 실제 이윤과 기업의 계산에 의해 이루어진 낙관적인 결과 사이의 격차가 20% 왜곡되어 있다고 추정한다. 계산 착오의 많은 부분이 먹을거리와 먹을거리 체계의 복잡한 특성으로 인해 발생하지만, 먹이사슬은 그로부터 혜택을 보고 있다. 



24. 어떤 정책 변경이 필요한가? 


소농의 먹이그물을 통한 식량주권은 세계의 식량안보를 위한 기초이며, 먹이그물을 지원하는 일이 기후변화에 직면한 현재 유일한 현실적 선택지이다. 그러나 ‘늘 그렇듯이 소농’은 선택지가 아니다. 농업은 1만2000년이 되었다. 이번 세기가 끝날 무렵, 우리는 세계가 300만 년 동안 겪지 못한 기후 조건에 직면할 수 있다. 소농은 큰 변화 없이 세계를 먹여살릴 수 없다.


올바른 정책, 토지와 권리, 소농 주도의 농생태학 전략으로 농촌의 일자리를 2-3배로 늘릴 수 있으며, 도시로 이주하는 압력을 뚜렷하게 감소시키고, 영양의 질과 이용가능성을 획기적으로 향상시키며, 기아를 없애는 한편, 농업의 온실가스 배출을 90% 이상 줄인다.


소농의 먹이그물에 있는 수억 명의 소농이 계속하여 그들 자신과 타인을 먹여살리기 위해서 다음과 같은 정책이 필요하다. 


영토(토지, 물, 숲, 어업, 채집, 사냥)에 대한 권리를 포함한 농지 개혁을 보장하라.

씨앗과 가축을 자유롭게 갈무리하고, 심고, 교환하고, 판매하며 육종하는 권리를 회복시켜라.

지역의 시장과 다양성을 제한하는 규제를 제거하라. 

농민의 방향에 대응하기 위해 공공 연구개발의 방향을 재설정하라.

농민이 주도하는 정책으로 결정된 공정한 무역을 실시하라. 

먹을거리와 농업 노동자를 위해 공정한 임금과 노동조건을 확립하라.

- 출처: 石基 

누가 세계를 먹여살리는가.pdf

로데일 연구소는 J.I. Rodale 씨가 1947년 칠판에 우리의 좌우명을 처음 적은 이후 농업을 통해 세계를 더 나은 곳으로 만들기위해 전념해 왔다. 건강한 토양 = 건강한 먹을거리 = 건강한 사람이 우리의 모든 사업을 추동한다.그것이 우리가 모든 노력을 시험하는 시금석이다. 

그래도 J.I. 씨는 건강한 토양이 건강한 먹을거리를 기르기 위한 토대라는 사실을 이해했다. 우리는 오늘 J.I. Rodale 씨의 신념과 Robert Rodale 씨의 수고로 펜실베니아 주 커츠타운Kutztown 외곽에 333에이커 규모의 농장에뿌리를 내리고 계속하고 있다. 

로데일 연구소에서 수행한 연구와 홍보활동은 건강한 토양을 기반으로 하는 농업 체계를 창안하기 위함이다. 60년이 넘는 기간에 걸쳐, 우리는 유기농업을 연구하고 세계의 농부와 과학자들과 의견을 나누면서 재배자를 지원하는 정책을 지지하고 있다.  

지난 수십 년 동안 가장 보람찬 발전 가운데 하나는 유기농 농민을 위한 모범사례를 시험하고 개발하면서 모든 농민들이 채택할 수 있는 기술과 방법을 찾았다는 점이다. 

이 특별 프로젝트를 통해 우리는 유기농업 체계에서 경운과 검은비닐의 사용만이 아니라, 무경운 관행농업 체계에서 제초제의 사용과 관련된 토양의 건강 문제를 해결할 수 있다는 걸 발견했다. 목표는 경운과 검은비닐의 대안으로 유기농 농민들이 무경운의 혜택에 접근할 수 있는지와 모든 농민들이 풀을 관리하고 좋은 덮개작물을 죽이기 위하여 검은비닐과 제초제 이외의 도구를 제공할 수 있는지의 여부를 결정하는 것이었다. 

모든 농민들이 그들의 토양을 보호하고 보존하며 시간과 돈을 절약할 수 있는 새로운 방법을 모색함으로써, 기존의 체계 안에서 창의적으로 가능성을 탐구하는 공동 연구가 필요하다. 관행농업과 유기농업 공동체 사이에 지식을 공유하는 일을 더욱 증진시키고, 그 결과를 연구하는 일은 예상보다 더 강하고 탄력적인 농업을 창출하는 데 필수적이다.  

최고의 과학적 연구와 교육을 통하여 우리는 더 지속가능한 먹을거리 체계를 향한 모든 농민의 여정을 지원할 수 있기를 바란다. 

- Coach Mark Smallwood


머리말

1988년부터, Northeast SARE는 농사에 대한 지속가능한 접근법을 발전시키고자 교육과 응용연구를 목적으로 보조금을 제공해 왔다. 그 25년은 많은 학습과 많은 성공만이 아니라 도전도 가져왔다. 변화는 위험할 수 있기에 혁신이 늘 쉬운 건 아니다. — 잘 알려진 사례와 결점, 모든 것이 광범위한 지원을 제공하는 경우가 많다. 덮개를 너무 빨리또는 너무 멀리 덮으면 참여하고자 하는 우리의 매우 많은 수혜자들이 멀어지게 할 수 있다. 

그 결과, Northeast SARE는 수혜를 원하는 농민들과 협력 관계를 맺고, 그들에게서 의견을 구하고자 했다. 제안의 계획부터 실행과 결과의 공유까지 공동의 노력으로 간주되었다. 이 과정은 수혜자와 이해관계자 사이의 관계를 강화하고, 과학자부터 생산자뿐만이 아니라 다른 모든 방향으로 흐르는 학습 공동체를 구축한다. 

SARE의 초창기에 이러한 연구 모델을 받아들이도록 특정 종류의 기관이 필요했다. 토지를 허가하는 몇몇 대학과로데일 연구소 같은 소수의 미래지향적 기관들이 이를 보완했다. 로데일을 포함한 초기의 협력자 가운데 상당수는 SARE와 지속적으로 관계를 맺어 오랜 세월에 걸쳐 일련의 혁신적인 아이디어를 모색하고 협력적인 농민 네트워크를 구축했다.

1988년, SARE가 활동한 첫 해에 로데일 연구수는 비디오를 활용해 농민들이 지속가능한 농법을 어떻게 채택할지 실제로 “보게” 하자는 아이디어를 제안했다. 그 이후 로데일은 작물의 수확량과 질병을 관리하기 위한 덮개작물과 무경운, 유기농 곡물 생산, 퇴비 또는 퇴비차의 활용을 탐구하기 위한 일에 대한 보조금을 받았다. 가장 최근에 로데일은 채소 생산에서 호밀-베치의 사이짓기 효과로 풀을 억제하는 동시에 토양의 질소를 증가시키는 연구에 대한 자금을 지원받았다.  

이 프로젝트는 우리의 보조금 검토자들과 공감하는 특성을 보여주었다: 한 가지 농법을 수정하는 점진적 변화를 뛰어넘어 작부체계를 재설계하는 시험이다.  이 사례에서 전체의 목표는 비닐 덮개의 사용을 제거하는 것만이 아니라, 콩과의 질소를 제공하는 동시에 토양 건강의 물리적 측면을 향상시키는 것이 포함된다. 좋은 SARE 프로젝트와 마찬가지로, 농민들은 여러 해 동안 연구 활동에 종사하고 있다. 

Northeast SARE의 교부금을 받고 있는 로데일의 성공은 농업의 체계에 접근하는 방법을 활용해 지속가능한 농업을 연구하는 능력에 달려 있다. 단일 작물, 단일 해충 또는 생산에 대한 단일 장벽에 집중하는 편이 더 쉽고 예측이 가능하다. 공간과 시간에 따라 달라지는 전체 농장의 상호작용을 조사하고 이해하는 일은 훨씬 어렵다. 우리는 이러한 지적 야망을, 특히 새로운 아이디어가 합리적으로 채택될 만큼 현실적으로 근거가 충분할 경우에 칭송한다.  Northeast SARE의 성공은 혁신을 촉진하기 위하여 우리가 제공하는 자금을 사용하는 수혜자 —협력자— 에게 달려 있는데, 항상 우리가 봉사하고자 하는 농촌 지역사회와 협력한다. 


배경

잡초 방제는 세계 곳곳의 여러 농민들이 여러 세대 동안 직면한 주요한 과제의 하나이다. 1940년대 제초제가 도입되기 이전에는 경운과 수작업 및 세계의 일부 지역에서는 물대기를 통해 잡초의 성장을 억제하는 기술이 활용되었다. 1970년대 인구 성장과 함께 매우 급속하게 제초제가 사용되면서 이제는 그것이 잡초를 방제하는 주요한 방식이 되었다. 

오늘날 대부분의 관행농민들은 경운과 제초제를 조합하는 방식으로 잡초를 처리한다. 이러한 기술은 잡초의 개체수를 낮추는 데 매우 효과적이면서, 토양과 환경 및 인간의 건강에 여러 가지로 악영향을 미친다. 토양을 교란하고 제초제를 살포해 토양 생태계에 손상을 가하고, 물을 흡수하고 유지하는 능력 및 양분을 저장하고 순환시키며 좋은 토양의 구조를 유지하는 능력을 떨어뜨린다. 그 결과 침식과 양분의 침출이 발생하기 쉬워지고, 농경지에서 소중한 물질이 제거되며 이 물질들이 흘러가 수자원에 피해를 준다. 또한 토양 생물에 미치는 영향으로, 경운이 쟁기바닥층을 두텁게 형성해 뿌리의 성장과 물의 흐름을 방해할 수 있다. 일부 제초제는 유실되어 하천과 호수 등에 흘러 들어가거나 지하수에 침출되면 환경과 인간의 건강에 해를 끼칠 수도 있다.

1950년대에 검정비닐 덮개가 풀을 억제하는 데 도움이 되는 또 다른 농자재로 시장에 도입되었다. "검정비닐"로 간단히 언급되는 검정비닐 덮개는 석유로 만드는 얇은 플라스특 막으로서, 농민들은 두둑의 표면을 덮고 그 아래로 관개용 관을 설치하곤 한다. 작물은 손이나 농기계로 비닐의 구멍에 옮겨심는다. 비닐은 영농철 막판에 농경지에서 제거하여 폐기한다. 

검정비닐은 그것을 덮은 곳에서 풀이 자라는 걸 매우 효과적으로 방지한다. 맨흙에 채소를 재배하는 것과 비교하면, 검정비닐을 사용했을 때 제초제를 친다거나 노동집약적인 수작업 제초 같은 노력을 매우 경감시킨다. 검정비닐의 또 다른 장점은 토양을 따뜻하게 만들어 파종 시기를 앞당긴다는 점이다. 이러한 이유 때문에 검정비닐은 지난 50년 동안 큰 인기를 얻었다. 

건강한 토양 생물군의 중요성

건강한 토양은 작물과 농민에게 여러 혜택을 제공하는 다양한 미생물 들이 포하되어 있다. 이러한 박테리아와 원생동물, 선충류, 곰팡이, 미세 절지동물 등이 식물의 잔류물을 분해하고, 토양의 응집력과 다공성을 향상시키며, 토양 유기물과 미네랄의 영양소를 식물이 이용할 수 있는 형태로 순환시키고, 식물을 병원균에게서 보호한다. 그 결과 건강한 토양 생물군과 함께 자라는 식물은 질병 저항성이 더 좋아지고, 가뭄이나 혹서 같은 스트레스에 더 잘 대처할 수 있다. 농지는 수분을 흡수하고 유지할 수 있으며, 침식이 될 가능성이 더 낮아진다.

그러나 검정비닐에는 단점도 있다. 유기농업에서도 허용되기는 하지만, 석유로 만들고 재활용이 어려워 본질적으로 지속가능하지 않다. 검정비닐을 사용하는 농경지 1200평당 45-55kg의 폐기물이 발생한다. 게다가 검정비닐을 사용하면 농경지 표면의 50-70%가 물이 침투할 수 없게 되어 유실과 침식이 각각 40%와 80% 증가한다. 그리고 검정비닐을 사용하는 곳에 제초제와 살충제를 살포하면, 농경지에서 유실되는 이러한 화학물질의 농도가 높아져 환경과 인간의 건강에 더 많은 해악을 미친다. 마지막으로 한여름 검정비닐에 덮힌 토양의 온도가 높아지면서 토양생물군을 균류가 아니라 박테리아 쪽으로 바꾸어 놓으며, 미생물의 스트레스를 높이는 것으로 밝혀졌다. 검정비닐은 1200평당 연간 250-300달러, 폐기에 1200평당 20달러의 비용을 발생시키기도 한다.

이러한 이유들 때문에 연구자들은 검정비닐 덮개의 대안으로 덮개작물 덮개 체계를 탐구해 왔다. 풀깎개, 롤러 크림퍼 또는 덮개작물을 베어 덮개로 바꾸는 농기계를 포함하여, 몇 가지 덮개작물 기반의 채소 생산체계가 과학적으로 개발되고 논의되었다. 

검정비닐이 토양의 질을 손상시키는 반면, 덮개작물 덮개는 토양에 유기물을 첨가하고 토양미생물을 증가시킴으로써 그를 향상시킨다. 연구자들은 지표면에 덮개작물의 잔류물을 남기면 작물의 "질병 저항성이 높아지고, 활력이 증가하며, 상품성 있는 수확량이 높아지고, 작물의 노화가 늦추어진다"는 사실을 밝혔다. 이러한 체계는 검정비닐보다 비용이 적게 들며고 실행이 더 빠르며, 농사가 끝난 뒤 그를 제거하고 폐기하는 데 비용과 노동력이 들지 않는다. 

연구자들이 덮개작물 덮개 체계의 유효성을 개발하고 시연하는 데 큰 진전을 이루었지만, 개발된 체계의 대부분은 덮개작물이 제공하는 잡초 방제를 보충하고자 합성 제초제에 어느 정도 의존하고 있다. 이러한 이유 때문에 로데일 연구소의 연구자들은 잡초를 억제하기 위해 제초제가 필요하지 않은 덮개작물 체계를 개발하는 데 몰두해 왔으며, 유기농업만이 아니라 관행농업의 채소 생산자도 덮개작물 덮개를 활용할 수 있도록 더욱 발전시켰다. 

John teasdale 씨와 Aref abdul-Baki 씨의 작업

John Teasdale 씨와 Aref Abdul-Baki 씨는 모두 미국 농무부의 식물 생리학자인데, 1980년대에 검정비닐의 대안으로 덮개작물 덮개를 탐구하기 시작했다. 그들은 토마토에 털갈퀴덩굴을 베어서 덮는 체계를 개발했다. 토마토를 심기 직전 털갈퀴덩굴을 베어내고, 농사철에 털갈퀴덩굴이 다시 자라는 것과 다른 풀을 통제하기 위해 1-2가지 제초제를 적용한다. 그들의 연구에서 이 체계에서 재배되는 토마토는 검정비닐에서 자라는 것보다 일반적으로 수확량이 더 낫고, 잎의 질병이 적으며, 상업적 비료가 더 적게 필요하다는 사실을 밝혔다. 또한 털갈퀴덩굴 덮개 체계는 검정비닐 체계에서 올리는 수익보다 2/3 정도 더 많은 수익을 올렸다. Teasdale와 Abdul-Baki 씨는 덮개작물 덮개 체계를 검정비닐 덮개의 대안으로 활용할 수 있다는 사실을 입증했을 뿐만 아니라, 이 체계가 토양과 식물, 환경에 유익하다는 사실을 증명했다. 


유기농 무경운과 롤러 크림퍼

유기농 무경운은 무엇인가? 

경운은 파종 전 풀을 관리하고, 거름과 작물의 잔류물을 넣으며, 토양을 개량하는 등의 준비를 하려고 활용되곤 한다. 경운은 때로는 토양 유기물의 분해를 매우 빠르게 촉진하기에 토양에는 좋지 않다. 또한 토양의 구조에 물리적인 손상을 가할 수 있고, 떼알구조와 침투 물길 같은 구조요소를 파괴한다. 경운은 토양을 뒤집기도 하여 토양생물을 교란시킨다. 그래서 유기농 무경운은 유기농업을 겨냥하여 비판을 하곤 한다. 너무 경운을 심하게 하여 토양을 교란시킨다고 말이다. 채소 농민은 특히 여러 번 작물을 심고 한해살이 풀을 관리하려고 1년에도 몇 번씩 토양을 경운한다. 

관행농민들은 제초제를 사용해 풀을 통제하고, 파종을 위해 특수한 무경운 농기구를 활용해 농지에서 경운을 줄이거나 하지 않을 수 있다. 제초제는 유기농업에서 선택할 수 없기에, 대부분의 유기농민은 풀을 통제하기 위해 경운에 크게 의존하며 토양을 경운하는 일로 비난을 받곤 한다. 롤러 크림퍼 같은 지난 20년 동안 개발된 새로운 기술과 도구는 유기농민이 그 생산 체계에서 경운을 줄일 수 있도록 한다. 

유기농 무경운은 세 가지 기본 원리에 근거한다. (1) 토양 생물이 체계를 강화하고, (2) 덮개작물이 비옥도와 풀관리의 근원이며, (3) 경운은 제한적이고 특정 간격으로 한다. 목적과 관념에서, 유기농 무경운은 다른 종류의 유기농법과 매우 비슷하다. 여기에는 유기물과 토양 생물로 토양을 개량하고, 다양하고 비화학적 수단으로 풀과 벌레 및 질병을 관리하며, 토양의 건강과 좋은 관리법을 통해 식물을 건강하게 한다는 것이 포함된다. 그러나 유기농 무경운은 이러한 목표를 달성하기 위하여 여러 방법을 활용한다. 토양을 건강하게 하고 풀을 관리하는 수단으로 경운을 대체하는 덮개작물에 훨씬 중점을 둔다. 


롤러 크림퍼(Roller-Crimper)

롤러 크림퍼는 로데일 연구소가 설계한 특별한 농기구로서, 농민들이 살아 있는 덮개작물을 덮개로 전환시킬 수 있도록 한다. 이 농기구는 덮개작물을 한쪽 방향으로 굴리고, 줄기를 부수어 쭈글쭈글하게 만든다. 적절하게 처리되면 식물체가 죽어 지표를 덮고 풀의 성장을 억제하는 고밀도의 잔류물 깔개를 남긴다. 

이 체계는 생물학과 기계학에 근거하기 때문에 어느 규모에나 적용할 수 있다. 작은 농장이나 큰 농장에서 모두 활용하기에 적합하다. 롤러 크림퍼는 트랙터와 말 뒤에서 끌 수 있고, 아니면 규모에 따라서는 손으로 밀 수도 있다. 트랙터의 앞이나 뒤에 장착할 수도 있다. 앞에 장착하면 무경운 드릴이나 말린 덮개작물에 직접 작물을 옮겨심는 도구를 트랙터의 뒤쪽에 자유로이 설치할 수 있다. 이런 방법으로 덮개작물을 끝내고 한번에 환금작물을 심을 수 있다.

풀깎개와 언더커터 같은 다른 도구도 덮개작물을 덮개로 전환시킬 수 있지만, 롤러 크림퍼는 그것들과 다른 몇 가지 장점이 있다. 연료가 덜 들고, 더 고르게 덮개를 만든다는 점이다. 풀깎개와 언더커터는 군데군데 덮개를 덮지 못하는 곳이 생기지만, 롤러 크림퍼는 땅바닥을 완전히 덮을 수 있는 깔개를 만든다.  

앞쪽에 장착한 롤러 크림퍼. 호밀과 베치 덮개작물을 토양의 깔개로 만든다.

덮개작물을 관리할 때 고려할 사항

덮개작물을 끝내고 다시 자라는 걸 막는 데 100% 성공하려면 굴리는 시기가 중요하다. 대부분의 덮개작물을 굴리는 정확한 시기는 식물에 꽃이 피거나 꽃가루를 생산할 때이다. 식물의 수명주기 가운데 이 단계일 때 매우 취약하여 롤러 크림퍼로 효과적으로 죽일 수 있다. 털갈퀴덩굴의 경우 적어도 75% 이상이 개화해야 하며, 100% 개화했을 때가 이상적이다. 펜실베니아 동부에서 겨울 호밀과 털갈퀴덩굴을 끝내는 적당한 시기는 보통 5월 말이나 6월 초이다. 

풀을 적절하게 통제하기 위해서는 개화기에 도달할 때까지 덮개작물의 바이오매스가 충분해야 한다. 덮개작물은 보통보다 씨앗을 많이 뿌리고, 건조물로 1200평당 약 3-4톤을 생산해야 한다. 이런 이유 때문에 바이오매스의 양이 많은 덮개작물이 무경운 체계에서 가장 잘 작동한다. 또한 탄질비가 20:1보다 높은 걸 선택하는 게 중요하다. 탄질비가 높을수록 탄소가 더 많아 더욱 천천히 분해될 것이다. 이는 농사철 내내 꾸준히 풀을 관리할 수 있도록 한다.  

수확 이후 남아 있는 덮개작물 잔류물은 땅속으로 넣고, 다음 농사철의 덮개작물을 재배할 수 있다. 따라서 농사는 이듬해를 계획하면서 가을에 시작된다. 이런 이유 때문에 유기농 무경운은 장기 계획이 필요하다. 

로데일 연구소의 Je Moyer 씨는 앞에 롤러 크림퍼를 장착하고 뒤에 무경운 파종기를 장착하여 덮개작물을 끝내는 동시에 곧바로 대두를 심는다.  


로데일 연구소의 유기농 덮개 실험

로데일 연구소는 2009년 Northeast Sustainable Agriculture Research and Education(NE SARE) 프로그램의 지원금을 받아서, 토마토와 기타 채소의 생산에 일반적인 검정비닐과 굴리고 베어낸 덮개작물 덮개에 어떤 차이가 있는지 비교했다.  


이 연구의 목적은 서로 다른 덮개 체계의 영향이 어떠한지 측정하는 것이었다. 

1) 토양의 품질과 비옥도

2) 풀 통제

3) 수확량과 폐기물 생산

4) 중소규모 채소 생산의 수익성

덮개작물 덮개가 토양의 품질과 비옥도를 향상시키고, 검정비닐과 비슷하게 풀을 통제하고 수확량을 보여주며, 폐기물을 거의 또는 전혀 생산하지 않고, 채소 생산에 더 유리한 기술일 것이라 예상했다.


설계

로데일 연구소에서 행한 실험밭 설계는 아래와 같다. 각각의 처리법은 4번 반복되었다. 아래 표시된 색상과 패턴은 다음에 나오는 도표와 일치한다. 이 실험에서 총 9가지의 처리법이 있었는데, 각각 다음의 덮개작물과 종료법 가운데 하나가 조합되었다.

토마토는 밭마다 한 줄에 45cm 간격으로 심었다. 토마토는 전형적인 재배법처럼 지주를 박고 줄을 띄웠다.


실험밭은 로데일 연구소의 인증을 받아 2009년, 2010년, 2011년 가을에 설치하여 9가지 덮개 체계를 비교했다. 모든 실험밭은 쟁기질과 디스크 쟁기질, 다지기를 하고 9월에 각각의 밭에다 덮개작물을 넣었다. 덮개작물“Aroostook”이란 호밀과 “Purple Bounty”란 털갈퀴덩굴을 활용했다. 털갈퀴덩굴은 1200평에 16kg의 비율로, 호밀은 1200평당 76kg의 비율로, 호밀/털갈퀴덩굴은 1200평당 43kg(호밀 32kg, 털갈퀴덩굴 11kg)의 비율로 심었다.

덮개작물이 겨울을 나고 초봄에 다시 자라도록 한 뒤, 연구진은 처리법 방식에 따라 각각의 밭에서 덮개작물을 끝냈다. 검정비닐 처리법에서는 파종 한 달 전인 5월 초에  덮개작물을 갈아엎었다. 비닐 덮개와 관개호스를 쟁기질하고 몇 주 뒤에 설치했다. 다른 두 처리법에서 덮개작물은 5월 말이나 6월 초에 적어도 절반 정도 개화기에 이르렀을 때(꽃가루를 생산) 풀깎개나 롤러 크림퍼로 베어냈다. 이 시기는 보통 파종하기 1주일 전쯤이다. 

모든 처리구에서 똑같은 수준의 질소가 투입되도록 덮개작물의 양분 분석을 수행했고, 부족한 부분을 보충하여 거름을 주었다. 토마토는 6월 중순에 심었고, 상업용 토마토 생산의 표준안처럼 지주를 세우고 줄을 띄웠다. 점적관개 호스를 덮개 처리구에 더하고, 모든 처리구에 필요에 따라 관개를 했다. 수확은 8월 초에 시작해 10월 중순까지 계속되었으며, 일반적으로 일주일에 한두 번씩 행했다. 농사철 내내 연구진은 토양 수분, 토양의 상태(수분, 온도, 탄질비 등), 풀의 바이오매스와 토마토의 수확량(전체와 시장용)에 관한 자료를 수집했다. 

로데일 연구소의 현장내 연구 이외에도, 펜실베니아와 뉴저지의 협력 농민 4명이 2011년과 2012년 그들의 농장에서여러 덮개 방법을 실험했다. 이 농민들의 도움으로 연구진은 다양한 장소와 토마토, 고추, 수박, 호박, 양배추, 애호박 등 이들이 재배하는 여러 작물을 대상으로 덮개 체계를 실험할 수 있었다. 이러한 현장외 실험의 결과는 이 보고서의 사례 연구 부분에서 볼 수 있다.  

로데일 연구소의  2010년 실험밭. 왼쪽 밭은 호밀/털갈퀴덩굴과 함께 검정비닐을 덮고, 오른쪽 밭은 호밀/털갈퀴덩굴을 베어서 덮었다. 


결과 

덮개작물 투입량

덮개작물 바이오매스

이 처리법에서 덮개작물은 검정비닐 실험밭을 경운하는 시기에 맞추어 다른 두 가지 처리법의 덮개작물보다 더 일찍 종결시킨다. 그 결과 검정비닐 처리법의 덮개작물은 생육기간이 짧아져 갈아엎을 때 바이오매스가 더 적었다. 이는 털갈퀴덩굴 덮개작물만 파종한 밭에서는 관찰되지 않았다. 또한 호밀을 추가한 덮개작물은 털갈퀴덩굴만 심은 곳보다 더 많은 바이오매스가 생겼다.   

덮개작물 탄소 투입량

더 일찍 끝냄에 따라 바이오매스가 더 적게 생성된 결과, 검정비닐 처리법에서 덮개작물이 탄소에 기여하는 정도는 유기농 덮개 처리법에서보다 적었다. 이 효과는 털갈퀴덩굴이 검정비닐 실험밭을 경운하기 전인 초봄에 빠른 성장기를 지남에 따라 털갈퀴덩굴만 파종한 처리법에서 덜 관찰되었다. 그러나 호밀을 포함한 실험밭에서 굴리고 베어낸 처리법은 탄소에 기여하는 정도가 검정비닐 처리법보다 평균적으로 60.2% 높았다. 세 가지 서로 다른 덮개작물 사이에서도 탄소에 기여하는 정도에는 차이가 있었다. 털갈퀴덩굴만 파종한 덮개작물은 1200평당 평균 812kg의 탄소인데, 호밀과 호밀/털갈퀴덩굴 덮개작물은 1200평당 각각 평균 1565kg, 1510kg이었다. 

덮개작물 질소 투입량

3년에 걸쳐 덮개작물 질소 투입량은 호밀만 파종한 처리법에서 가장 낮았다. 호밀에 털갈퀴덩굴을 추가하면 질소 투입량은 2배로 늘었다. 

이 도표는 2011년 모든 처리구에서 덮개작물을 종결시키기 직전에 측정한 덮개작물의 바이오매스를 보여준다(에러바는 표준 오류를 나타낸다.)

이 도표는 아홉 가지 처리법 각각에서 덮개작물의 평균 탄소 투입량이 어떠한지 보여준다. 여기의 수치는 2010년, 2011년, 2012년의 평균값이다. 

이 도표는 아홉 가지 처리법 각각에서 덮개작물의 평균 질소 투입량이 어떠한지 보여준다. 여기의 수치는 2010년, 2011년, 2012년의 평균값이다. 


토양의 질에 미치는 영향

연구진은 농사철 동안 모든 처리법에서 토양의 수분과 온도를 측정했다. 토양의 탄소와 질소의 백분율은 각 농사철 전후에 처리법마다 측정했다. 


토양 수분

토양 수분은 굴리고 베어낸 처리법과 비교하여 검정비닐 처리법에서 더 낮았다. 검정비닐 실험밭은 점적 관개를 통해 수분의 대부분을 공급받았기 때문에, 이 차이는 검정비닐 실험밭에서 관개의 양이나 빈도를 증가시킴으로써 쉽게 교정할 수 있었다. 

2011년 농사철을 평균했을 때, 검정비닐로 덮은 지역은 토양 수분이 25%였는데 반해 굴리고 베어낸 지역은 모두 수분이 28%였다. 2012년 평균은 검정비닐에서 20%, 베어낸 처리법에서는 23%, 굴린 처리법에서는 22%였다. 

이 도표는 토양 수분 자료를 통해 관찰된 경향을 보여준다. 검정비닐 덮개로 덮은 두둑은 굴리고 베어낸 두둑보다 일반적으로 수분이 더 적었다. 이런 양상은 여러 표본 추출 날짜에 관찰되었는데, 항상 그런 건 아니었다.

토양의 온도

검정비닐과 덮개작물 덮개 사이의 토양 온도 차이는 농사철 초기에 더 컸고, 말미에는 매우 적었다. 6월과 7월에 검정비닐로 덮은 실험밭은 베어내고 굴린 실험밭보다 토양 온도가 더 높았다. 이런 차이는 농사철이 끝날 무렵(9월, 10월)에는 미미했다. 검정비닐 처리법에서 최고 토양 온도는 6월에 굴리고 베어낸 처리법보다 3.2도씨 더 높았고, 7월에는 2.2도씨, 9월에는 1.1도씨, 10월에 0.3도씨 더 높았다. 2012년 6월과 7월에 최저 토양 온도는 검정비닐 처리법에서 약 1.1도씨 더 높았다. 덮개작물 유형에 따라 토양 온도에는 차이가 없었다. 덮개작물 덮개는 토양 온도를 알맞게 유지시키고 시간에 따른 변동을 줄여서 토마토 생산에 유리하다. 

이 표는 2012년 6월부터 10월까지 세 가지 다른 종결 처리법에서 월간 최고와 최저 토양 온도를 요약한 것이다. 


토양의 양분: 탄소와 질소 백분율

로데일 연구소의 현장 토양에서 탄소와 질소의 백분율에는 관측할 수 있는 변화가 없었다. 그러나 2012년의 호밀/털갈퀴덩굴 덮개작물에서 굴리고 베어낸 처리법 모두에서 농사철에 따라 탄소의 백분율이 증가했다. 굴린 호밀/털갈퀴덩굴에서 증가한 양은 베어낸 호밀/털갈퀴덩굴 처리법에서 증가한 양의 2배였다. 

협력 농장의 실험에서, 4개의 농장 가운데 하나에서는 검정비닐 처리법에서 토양의 탄소 백분율이 약간 증가(0.22%)한 반면, 다른 곳에서는 굴린 호밀/털갈퀴덩굴에서 0.31% 증가했다.

이 도표는 2012년 로데일 연구소 실험밭의 농사철 이전과 이후의 토양 탄소 백분율을 보여준다. 호밀이나 털갈퀴덩굴만 파종한 곳에선 탄소 백분율에 별다른 변화가 없었기 때문에, 여기에서는 호밀/털갈퀴덩굴 처리법만 표시되었다.  


풀 통제

풀의 바이오매스는 토마토를 심고 4주 뒤에 측정했다. 2010년과 2012년, 풀의 바이오매스 표본을 추출한 지역은 두둑과 고랑 모두를 포함한다. 2011년, 풀의 바이오매스 측정은 두둑에서만 이루어졌다. 이는 2011년 모든 처리법에서, 특히 검정비닐 처리법에서 풀의 바이오매스 값이 더 낮아지는 결과를 가져왔다. 

2010년, 호밀과 호밀/털갈퀴덩굴 체계의 덮개작물 덮개 처리법에서는 풀의 압박이 거의 없었다. 호밀/털갈퀴덩굴 처리법 가운데, 굴리고 베어낸 체계에서 풀의 압박은 검정비닐 호밀/털갈퀴덩굴 처리법의 평균 5%에 불과했다. 굴리고 베어낸 호밀은 검정비닐 호밀에서 풀 압박의 평균 13%를 나타냈다. 덮개작물의 유형 가운데 털갈퀴덩굴이 풀의 성장을 억제하는 데 가장 효과적이지 않았다.  

2011년에 했듯이 두둑에서만 풀의 바이오매스를 측정했을 때, 검정비닐 처리법에서 풀의 바이오매스가 매우 낮았다. 호밀/털갈퀴덩굴과 호밀 체계에서는 굴린 실험밭이 베어낸 실험밭보다 풀의 바이오매스가 더 낮았다.

2012년, 각 덮개작물의 유형에서 굴리고 베어낸 처리법은 검정비닐 처리법보다 풀의 바이오매스가 더 높았다. 털갈퀴덩굴과 호밀 덮개작물 체계에서는 약 2배, 털갈퀴덩굴/호밀 체계에서는 약 3배였다. 

3년에 걸쳐 모든 처리법에서 풀의 바이오매스에는 변동이 있었다. 하지만 검정비닐 체계는 굴리고 베어낸 체계보다 더 일관적이었다. 검정비닐은 2011년과 2012년에 풀을 더 효과적으로 억제했는데, 굴리고 베어낸 체계가 2010년에는 더 우수했다. 굴림은 베기보다 일반적으로 풀을 억제하는 데에 더 효과적이었다. 모든 해에 호밀/털갈퀴덩굴 덮개작물 체계가 털갈퀴덩굴과 호밀 체계와 일치하거나 그 이상의 효과를 나타냈다. 

이 도표는 2010년 모든 처리법에서 토마토를 심고 4주 뒤에 측정한 풀의 바이오매스를 보여준다. 이 수치들은 두둑에서 성장한 풀만 나타낸다(고랑 제외).

이 도표는 2011년 모든 처리법에서 토마토를 심고 4주 뒤에 측정한 풀의 바이오매스를 보여준다. 이 수치들은 두둑에서 성장한 풀만 나타낸다(고랑 제외).

이 도표는 2012년 모든 처리법에서 토마토를 심고 4주 뒤에 측정한 풀의 바이오매스를 보여준다. 이 수치들은 두둑과 고랑에서 성장한 풀을 나타낸다. 


수확량 

토마토는 필요에 따라 일주일에 1-2번 수확했다. 전체 수확량은 모든 연도에 측정하고, 상품 수확량은 2011년과 2012년에 측정했다. 2012년, 잎마름병으로 토마토 수확이 확 줄어서 모든 처리법에서 전체 수확량과 상품 수확량에 영향을 미쳤다.  

전체 수확량

2010년, 굴리고 베어낸 덮개작물 처리법 모두가 검정비닐 처리법의 전체 수확량보다 더 많았다. 덮개작물 유형은 토마토 수확량에 큰 영향을 미치지 않았다. 

2011년 전체 수확량은 검정비닐 체계의 2010년 수확량과 비슷했지만, 유기농 덮개 체계에서 크게 감소했다. 전체 수확량은 검정비닐 처리법에서 더 많았고, 검정비닐 처리법 안에서 덮개작물의 유형은 수확량에 큰 차이를 일으키지 않았다. 유기농 덮개 체계에서 호밀/털갈퀴덩굴 덮개작물을 활용한 곳이 털갈퀴덩굴과 호밀 체계와 비교해 각각 2-2.5배 수확량이 많았다. 2011년의 결과는 호밀과 털갈퀴덩굴을 조합할 때 토마토 수확량에 시너지 효과가 있음을 보여주었다.

2012년의 전체 수확량은 잎마름병으로 크게 감소하였는데, 2011년에 관찰된 결과와 유사한 양상을 보였다.

상품 수확량

2011년, 상품 수확량은 전체 수확량과 평행을 이루었고, 각 처리법에서 평균 20% 감소했다. 굴리고 베어낸 호밀/털갈퀴덩굴 처리법이 검정비닐 호밀/털갈퀴덩굴의 약 70%에 해당하는 상품 수확량을 올려 검정비닐 처리법과 가장 경합을 했다. 

2012년, 잎마름병 때문에 전체 수확량의 23%만 상품성이 있었다. 굴리고 베어낸 털갈퀴덩굴 처리법이 가장 낮은 상품 수확량을 올렸고, 다른 전체 처리법 사이의 상품 수확량에는 큰 차이가 없었다. 

이 자료는 여러 덮개 유형이 토마토 수확량에 미치는 영향은 해마다 다를 수 있음을 시사한다. 덮개의 성능에 대한 이러한 연간 변화와 관련된 요소를 더 잘 이해하기 위해서는 장기간의 연구가 필요할 것이다.  

이 도표들은 2010년과 2011년의 전체 토마토 수확량을 보여준다. 2010년에는 덮개작물 덮개가 검정비닐 처리법보다 우수한 결과를 나타냈고, 2011년에는 그 양상이 바뀌었다. 


폐기물 생산

실험한 모든 체계의 모든 처리법에서 관개용 비닐호스를 사용했기 때문에 비닐 폐기물이 조금 생산되었다. 그러나 밭에서 꺼낸 비닐의 양은 검정비닐 처리법에서 1200평당 비닐 덮개 41.5kg에 비닐호스 14kg을 더해 4배나 많았다. 

수익성

비용

처리법에 따라 비용이 변동되었지만(가변 비용), 나머지는 모든 처리법에서 동일했다(고정 비용). 가변 비용에는 덮개작물 씨앗, 비료, 비닐 덮개, 장비의 이동, 비닐의 처분, 제초 인건비 등이 포함되었다. 고정 비용은 1200평에 총 9,668.26달러였는데, 여기에는 비닐호스, 지주, 끈, 토마토 씨앗, 상토, 포트에 줄을 띄우고 수확하고 심고 분류하는 인건비가 포함되었다. 

각 체계의 총 비용에서 가장 두드러진 차이는 덮개작물의 유형에 따라 발생했다. 털갈퀴덩굴 덮개작물 체계는 질소비료가 필요하지 않아 일반적으로 연간 비용이 가장 낮았다. 호밀 체계는 질소비료가 가장 많이 필요하여 보통 연간 비용이 제일 높았다. 검정비닐 처리법은 굴리고 베어내는 체계보다 실행하는 데에 일반적으로 비용이 많이 들었지만(평균 135달러 차이), 이에 대한 자료에 변동이 너무 많았다는 게 중요하다. 

수익

이 계산에서 토마토의 가격은 동부의 여러 대형 유기농 도매상의 보고서를 기반으로 한다. 매년 활용된 가격은 계절에 따른 토마토 가격의 평균이다. 연간 수익은 각 체계의 상품 수확량에 그해의 유기농 토마토 가격을 곱하여 계산했다. 상품 수확량은 실험의 첫해에는 측정하지 않았기 때문에, 2011년에 관찰한 바와 같이 20%의 도태율을 가정하여 추측에 근거해 2010년의 상품 수확량을 계산했다.

각 체계의 수익은 상품 수확량과 직접적으로 연관된다. 따라서 매출액은 체계와 해에 따라 크게 달라졌다. 각 처리법에서 가장 수익이 높은 건 2010년에, 가장 낮은 건 잎마름병 때문에 2012년에 관찰되었다.   

이윤

각 체계의 수익성은 해에 따라 다양했다. 모든 체계에서 가장 수익성이 높은 해는 2010년이었다. 굴리고 베어낸 체계는 검정비닐보다 훨씬 더 수익성이 좋아, 1200평당 평균 2만3천 달러의 수익을 올렸다. 베어낸 체계는 2010년에 일관적으로 가장 수익성이 좋았다. 유기농 덮개 체계에서는 털갈퀴덩굴과 호밀/털갈퀴덩굴 처리법이 호밀 처리법보다 연간 수익이 더 높았다.

2011년, 검정비닐 처리법은 2010년과 비슷한 수확량을 올렸지만 굴리고 베어낸 체계는 수익성이 훨씬 더 낮았다.검정비닐 처리법은 2011년에 가장 수익성 좋은 처리법이었다. 유기농 덮개 가운데 호밀/털갈퀴덩굴 체계가 가장 수익성이 좋고, 계절에 따라 순 손실이 일어나 호밀이 가장 낮았다.  

모든 체계는 2012년 잎마름병으로 순 손실이 발생했다. 이 해에는 수익이 관찰되지 않았다. 

해마다 수익성에 많은 변동이 일어났기 때문에 각 체계의 수익성을 고려하려면 3년 모두를 살펴보는 게 도움이 된다. 2010-2012년 동안을 평균으로 내면, 가장 수익성 높은 건 굴린 호밀/털갈퀴덩굴과 베어낸 호밀/털갈퀴덩굴 체계에서 달성되었다. (도표는 아래를 참조.) 


2010-2012년 평균 연간 비용, 수익, 그리고 1200평당 이윤

2010년에는 상품 수확량을 측정하지 않았기 때문에, 그해의 상품 수확량은 2011년에 관찰된 것과 같이 20% 도태율을 활용해 계산했다. 


더 많은 덮개작물 덮개 연구

이 연구가 로데일 연구소에서 진행되는 동안, 다른 곳에서도 유기농과 관행농 덮개작물 덮개 체계를 더 깊이 살펴보고 있었다. 몇 가지를 소개하면 아래와 같다.

“털갈퀴덩굴 덮개작물에서 경운을 줄인 유기농 옥수수 생산”Teasdale, J.R., S.B. Mirsky, J.T. Spargo, M.A. Cavigelli, and J.E. Maul 2012. Reduced-tillage organic corn production in a hairy vetch cover crop. Agronomy Journal 104:621-628

Teasdale 들은 풀씨가 저장된 양이 적을 때 굴려 죽이는 털갈퀴덩굴 덮개작물의 유기농 옥수수가 디스크쟁기로 죽인 털갈퀴덩굴의 옥수수보다 훨씬 수확량이 많다는 사실을 밝혔다. 

“가을과 봄에 파종한 덮개작물 덮개가 호박의 수확량과 열매의 청결, 푸사리움 열매 썩음병 발달에 미치는 영향”Wyenandt, C.A., R.M. Riedel, L.h. Rhodes, M.A. Bennett, and S.G.P. Nameth. 2011. hortTechnology 21:343-354

봄에 종결시킨 덮개작물 덮개에서 재배한 호박은 맨흙에서 생산한 호박보다 숫자와 무게에서 약간 더 높았다. 또한 이 실험밭의 호박들은 FFR(Fusarium solani f. sp. Cucurbitae race 1)에 덜 감염되었다.

“덮개작물 덮개 체계의 풀 관리에 대한 기계론적 접근”Wells, M.S. 2013. (Doctoral dissertation). Retrieved from http://www.lib.ncsu.edu/ resolver/1840.16/9082

이 연구의 여러 발견 가운데 하나는 옥수수와 대두의 생산에서 1200평당 약 4082kg의 바이오매스가 나오는 굴린 호밀이 풀을 훌륭하게 통제한다는 것이다. 


결과 요약

덮개작물의 바이오매스: 검정비닐 덮개와 관련하여 초기에 종결시키면, 이 실험밭에서는 굴리고 베어낸 실험밭과 비교하여 더 적은 덮개작물의 바이오매스가 나온다. 호밀과 호밀/털갈퀴덩굴 덮개작물은 털갈퀴덩굴 덮개작물의 바이오매스보다 약 2배가 많다. 

덮개작물의 양분 투입: 호밀/털갈퀴덩굴은 양분 투입이란 측면에서 뛰어난 덮개작물이었다. 1200평당 가장 많은 양의 질소를 제공하며, 1200평당 탄소의 양도 최고치에 매우 근접한다. 한편 종결 방법은 토양에 투입되는 질소에 큰 영향을 미치지 않으며, 탄소 투입은 굴리고 베어낸 처리법에서 더 높았다. 

토양 수분: 검정비닐 처리법이 일반적으로 유기농 덮개 처리법보다 수분이 더 적었다. 

토양 온도: 검정비닐 처리법에서 최대 토양 온도는 6월에는 굴리고 베어낸 처리법보다 평균 3.2도씨, 7월에는 2.2도씨, 9월에는 1.1도씨, 10월에는 0.3도씨 더 높았다. 2012년 최소 토양 온도는 검정비닐 처리법에서 6월과 7월에 약 1.1도씨 더 높았다. 덮개작물의 유형에 따른 토양 온도의 차이는 없었다.  

토양의 양분 함량: 굴린 호밀/털갈퀴덩굴 처리법에서 토양의 탄소 백분율이 조금 증가했다. 모든 처리법에서 토양의 탄소와 질소의 백분율에는 큰 변화가 없었다. 

풀 억제: 3년 동안 모든 처리법에서 풀의 바이오매스에 변동이 있었지만, 검정비닐 체계는 굴리고 베어낸 것보다 더 일관적이었다. 검정비닐이 2011년과 2012년에 더 효과적으로 풀을 억제했는데, 2010년에는 굴리고 베어낸 체계가 검정비닐보다 뛰어났다. 굴리기는 일반적으로 베기보다 풀을 더 효과적으로 억제했다. 모든 해에 호밀/털갈퀴덩굴 덮개작물 체계가 털갈퀴덩굴과 호밀 체계와 비슷하거나 더 뛰어났다. 

전체 수확량과 상품 수확량: 토마토 수확량에 뿌리덮개의 유형이 미치는 영향은 해마다 달랐다. 2010년에는 덮개작물 덮개 체계가 검정비닐 체계보다 수확량이 더 높았지만, 2011년과 2012년에는 그 반대였다. 덮개작물 덮개 체계(털갈퀴덩굴, 호밀, 호밀/털갈퀴덩굴)에서는 굴리고 베어낸 호밀/털갈퀴덩굴 처리법이 가장 수확량이 많았다.

폐기물 생산: 검정비닐 덮개를 사용하면 비닐 폐기물의 양이 4배 정도 늘어났다. 덮개작물 덮개 처리법은 관개호스 때문에 1200평당 약 13kg의 비닐 폐기물이 발생했다. 검정비닐 처리법은 관개호스와 비닐 덮개 때문에 1200평당 약 55kg의 비닐 폐기물이 발생했다. 

수익성: 유기농 덮개 체계의 연간 수익성은 검정비닐 체계의 그것에 비교해 훨씬 변동이 많았다. 그러나 2010-2012년에 걸쳐 평균을 했을 때, 가장 높은 수익성은 굴린 호밀/털갈퀴덩굴과 베어낸 호밀/털갈퀴덩굴 체계에서 달성되었다.  


협력 농민의 사례 연구

로데일 연구소에서 실행한 실험 이외에도 펜실베니아와 뉴저지 주에 있는 4명의 농민들이 2011년과 2012년에 자신의 농장에서 덮개작물 덮개를 실험했다. 각자 로데일의 실험에서 행한 굴린 호밀/털갈퀴덩굴 체계를 그들이 풀을 억제하는 보편적 방법과 비교했다. 한 농민은 자신의 실험밭에 새롭게 설계된 휴립 롤러를 활용해 두둑을 지어 재배했다. 그들의 현장 연구에 활용된 실험 작물에는 토마토, 겨울과 여름 호박, 고추, 양배추가 포함된다.

2011년, 협력 농민들은 연구진이 덮개작물 덮개로 얼마나 풀이 억제되는지 정확하게 평가할 수 있게 그들의 굴린 덮개작물 처리밭에 풀을 매는 걸 허용하지 않았다. 2012년, 농민들은 토마토를 심고 4주 동안 수행한 풀 억제 평가한 이후에 굴린 실험밭의 풀을 맬 수 있었다. 이러한 이유로, 굴린 호밀/털갈퀴덩굴 처리법의 수확량은 2011년보다 2012년에 전반적으로 더 좋아졌다. 두 해 모두, 농민들은 자신의 관리 체계에서 일반적으로 사용하는 풀 통제법을 사용하도록 허용되었다.


사례 연구 #1: Genesis Farm의 지역사회 지원 텃밭

농장 일괄

위치: Blairstown, NJ

농민: Mike Baki

농사 경력: 22년

전체 면적: 9만 평

경작 면적: 6만 평

토양 유형: 각편상석력질의 미사질 양토(Nassau-Manlius complex)

작물: 다양한 채소 생산, 과일, 건초

가축: 산란계

상품판매: 지역사회 지원 농업 회원 300명 

미국에서 초기에 지역사회 지원 농업을 시작한 농장의 하나. 농민은 왼쪽부터 Smadar English, Mike Baki, Judy Vonhandorf 씨.

Genesis Farm의 실험밭에서, Mike Baki 씨는 자신의 표준인 검정비닐 체계 바로 옆에 로데일의 굴리는 호밀/털갈퀴덩굴 체계를 실험했다. 그의 표준 체계에서는 두둑에 생분해 비닐을, 고랑에는 짚 덮개를 사용한다. 인력 제초는 필요할 때 표준 처리법으로 실행했다. 2011년 Mike 씨는 애호박, 토마토, 수박을 재배하고, 2012년에는 수박을 고추로 대체했다.  

2011년, 굴린 호밀/털갈퀴덩굴 밭은 검정비닐 밭보다 풀의 압박이 더 심했다. 이는 모든 작물의 수확량에 영향을 주었지만 정도는 달랐다. 굴린 호밀/털갈퀴덩굴의 수박과 애호박은 Mike 씨의 표준 검정비닐 처리법에 비교해 2배 정도 수확이 적었다. 그러나 토마토는 두 체계에서 비슷하여, 검정비닐 밭에서 생산된 양의 약 75%가 굴린 호밀/털갈퀴덩굴 밭에서 나왔다.  

2012년, 농민들에게 4주 뒤에 김매기를 허용했을 때에는 두 처리법에서 풀의 압박은 큰 차이가 없었다. 고추와 애호박 수확량은 굴린 호밀/털갈퀴덩굴에서 뚜렷하게 적었다. 토마토 수확량은 두 체계에서 거의 비슷했다. 굴린 호밀/털갈퀴덩굴에서 1200평당 7231kg이고, 검정비닐 처리법에서 1200평당 7468kg이었다. 

굴린 호밀/털갈퀴덩굴 처리법의 비용은 91.4m당 202.50달러로, 검정비닐 처리법의 506.80달러의 절반에도 미치지 못했다. 2012년의 토마토 수확량이 꾸준하게 계속된다면, 위의 처리법 비용은 상당한 절감으로 이어질 것이다. Mike 씨는 굴린 호밀/털갈퀴덩굴 체계를 계속 실험하며, Genesis Farm에서 실제로 활용할 수 있는 효과적인 방법을 찾길 바라고 있다. 

Genesis Farm의 실험밭: 굴린 호밀/털갈퀴덩굴 처리법이 왼쪽, 검정비닐이 오른쪽이다. 두 처리법 사이의 고랑은 Mike Baki 씨의 표준 풀 관리 체계의 일부인 짚으로 덮었다. 

 

사례 연구#2: Swallow Hill Farm 

농장 일괄

위치: Cochranville, PA 

농부: Douglas와 Elizabeth Randolph 씨

농사 경력: 20년

전체 면적: 6만 평

경작 면적: 3만6000평

토양 유형: Glenelg 미사질양토

작물: 고추, 토마토, 십자화과 채소, 호박, 건초, 호밀짚, 블루베리, 식용 대황, 아스파라거스

가축: 없음 

상품판매: 농장 판매와 텃밭 센터와 식당에 도매

Douglas Randolph 씨가 농장에서 덮개작물로 호밀과 붉은토끼풀을 심고 있다. 

Douglas와 Elizabeth Randolph 씨가 이 연구에 참여했을 때, 덮개작물 덮기는 이미 그들의 표준적인 작부체계의 일부였다. 그들이 개발한 체계는 자주개자리 건초 이후 호밀을 조합하거나 호밀과 붉은토끼풀을 활용하고, 컬티패커(cultipacker)를 이용해 종결시킨 뒤 살아 남은 덮개작물을 죽이고자 글리포세이트를 살포했다. 

Randolphs 씨는 로데일의 굴린 호밀/털갈퀴덩굴 체계와 자신의 변형 기술을 비교했다. 호밀과 붉은토끼풀을 컬티패커로 갈아버리는 대신 굴리고, 가끔 발아 후 제초제를 살포했다. 그들은 무경운 파종기로 실험 작물인 버터호두호박을 심었다. 2011년과 2012년, 호밀과 붉은토끼풀 체계에서 호박 수확량은 27% 증가했다. Randolphs 씨에 의하면 붉은토끼풀은 펜실베니아 남부(평균 최저 기온 -23도씨에서 -17.8도씨)에서는 뿌리를 빽빽하게 내리는데, 추운 겨울에는 죽기 때문에 더 북쪽의 농민에게는 적합하지 않을 수 있다고 한다. 그럼에도 불구하고 Randolphs 씨는 적절한 기후에서 붉은토끼풀을 재배할 경우, 그것이 굴리는 덮개작물 체계에서 털갈퀴덩굴의 실용적인 대안이란 것을 입증했다. 

Douglas와 Elizabeth 씨는 두 가지 서로 다른 덮개작물의 조합이 비슷하게 풀을 억제한다는 것을 관찰했다. 컬티패커를 활용하여 덮개작물을 끝내는 그들의 예전 방식과 비교하여, 롤러크림퍼는 더 효과적으로 줄기를 구불구불하게 만들고 덮개작물이 다시 자라는 걸 방지했다. 그 결과, 롤러크림퍼를 사용했을 때 발아 후 제초제를 살포할 필요가 줄었다. 

이 연구에 참여한 이후 Randolphs 씨는 호밀이나 호밀과 붉은토끼풀 덮개작물을 종결시키기 위해 컬티패커 대신 롤러크림퍼를 활용하게 되었고, 농장에서 사용하는 제초제의 양이 40-50% 감소했다.  

Randolphs 씨 농장의 굴린 호밀과 붉은토끼풀에서 재배하는 버터호두호박

 

사례 연구 #3: Meadow View Farm

농장 일괄

위치: Bowers, PA

농부: James와 Alma Weaver 씨 및 아들들 

농사 경력: 38년

전체 면적: 9만3600평

경작 면적: 8만4000평

토양 유형: Clarksburg 미사질양토

작물: 토종 고추와 토마토, 호박, 단옥수수, 사료용 옥수수, 대두, 밀

가축: 양, 산란계

상품판매: 농장 판매대, 도매, 해마다 고추 축제

Meadow View Farm의 James Weaver 씨는 호밀/털갈퀴덩굴 덮개작물을 끝내기 위해 두둑 짓는 롤러크림퍼를 사용한다. 

James Weaver 씨는 똑같은 땅에서 38년 동안 농사를 지었다. 그는 지역에서 잘 알려져 있으며, 여러 가지 토종 품종만이 아니라 신품종 토마토와 자신이 육종한 유령고추를 재배한다.  

로데일에서 이 연구에 참여할지에 관하여 James 씨에게 물었을 때, 그는 약 1만8000평에 해마다 검정비닐을 덮어서 농산물을 생산하고 있었다. 그는 자신의 표준 검정비닐 관리법 옆에 로데일의 굴린 호밀/털갈퀴덩굴을 실험했다.James 씨의 표준 체계는 인력 제초와 식초의 살포(식물의 끝부분이 시들게 함) 및 가끔 억센 여러해살이 풀에 농약을 치며, 검정비닐 덮개를 사용한다. James 씨는 2011년에는 실험밭에 두 종류의 토마토를, 2012년에는 양배추를 재배했다.  

James 씨는 첫해에 활용한 굴린 호밀/털갈퀴덩굴 체계에서 두 종류의 토마토 수확량이 모두 형편없었다고 보고한다. 그는 이것이 연구의 설계에서 굴린 실험밭의 제초를 허용하지 않았기 때문이라고 생각한다. 실험 둘째 해에 4주 뒤 제초를 허용했을 때, James 씨의 토마토 수확량은 굴린 처리법에서 1200평당 7098kg을 올렸고, 검정비닐 처리법에서는 1200평당 9364kg을 올렸다. 검정비닐 실험밭이 전체 수확량에서 32% 더 나왔지만, James 씨는 굴린 호밀/털갈퀴덩굴의 토마토 품질이 열과 현상 때문에 검정비닐의 그것보다 훨씬 좋았다고 보고한다. 그 결과, 각 처리법의 실제 상품 수확량과 수익성은 매우 비슷했다.  

James 씨는 두 처리법 모두 양배추는 흉년이었다고 하는데, 검정비닐 실험밭의 수확량이 약 65% 더 높았다.

그는 로데일의 덮개작물 덮개 실험에 참여한 이후 호박밭의 검정비닐 덮개를 굴린 호밀로 대체하고 검정비닐의 총사용량을 거의 절반으로 줄였다. 그는 자신의 농사 가운데 더 많은 면적을 덮개작물 덮개 체계로 바꾸고 싶어한다. 안타깝게도 다음해를 위해 제때 덮개작물을 심을 공간이 없다. 호밀과 털갈퀴덩굴을 심어야 할 9월인데 그의 작물이 아직도 대부분 재배되고 있다. 그럼에도 불구하고 그는 그걸 적용할 방법을 찾을 수 있기를 바라고 있다. James 씨는“특히 내가 늙어갈수록 비닐을 제거하고 폐기하는 일을 하지 않아도 되는 게 좋다”고 이야기한다.


사례 연구 #4: Quiet Creek Farm

농장 일괄

위치: Kutztown, PA

농부: John과 Aimee Good 씨 

농사 경력: 12년

전체 면적: 9600평

경작 면적: 9600평

토양 유형: Clarksburg 미사질양토

작물: 다양한 채소 농사

가축: 없음

상품 판매: 지역사회 지원 농업의 농장 나눔, 도매

지난 8년 동안 John과 Aimee Good  씨는 로데일 연구소에서 임대한 토지에서 유기농업을 실행했다. 

John과 Aimee Good 씨의 농장은 로데일 연구소에서 임대한 땅이다. 그들은 로데일의 굴린 호밀/털갈퀴덩굴 옆에서 검정비닐 없이 경운을 하는 그들의 유기농 풀 관리법을 실험했다. 그들은 실험 작물로 버터호두호박을 선택하고, 실험 기간에는 제초를 전혀 하지 않았다. 

Weed pressure in John과 Aimee 씨의 실험밭에서 2011-2012년 풀의 압박은 다채로웠다. 첫해에 풀의 바이오매스는 굴린 호밀/털갈퀴덩굴 처리법에서 약 4배 더 많았다. 그러나 2012년 이들의 표준 노지 처리법에서는 굴린 호밀/털갈퀴덩굴보다 풀의 압박이 2배 더 심했다. 두 체계의 평균 수확량은 매우 비슷했다. 굴린 호밀/털갈퀴덩굴은 1200평당 6124kg이었던 한편, 그들의 표준 관리법에서는 1200평당 6463kg으로서 약 5% 차이가 났다. 

John 씨는 굴린 호밀/털갈퀴덩굴 체계를 실험하고 있으며 그들의 농장에 적용할 방법을 찾길 바라고 있다. 그들이 여러 종류의 채소를 재배한다는 점이 걸림돌이 되긴 한다.  다양한 작물의 시기에 맞추는 일이 복잡할 수 있으며, 씨앗의 크기가 작은 채소를 덮개작물 덮개에 곧뿌림하는 것이 어려워질 수 있다. 

그들은 채소밭 가운데 약 1200평 정도는 계속 검정비닐을 사용한다. 그러나 이 연구에 참여한 이후 John과 Aimee 씨는 그 체계에 덮개작물을 도입하기 시작했다.  그들은 현재 토양에 유기물을 더하고 비닐로 인해 유실량이 증가하며 발생하는 침식을 줄이기 위해 검정비닐 두둑 사이의 고랑에 독보리와 토끼풀을 심었다. 또한 John 씨는 이 기술 덕에 특히 땅이 축축할 때 두둑 사이에서 작업하기에 훨씬 더 편한 공간이 만들어졌다고 보고한다. 그들은 잔디깎이로 고랑의 덮개작물을 관리한다. 


유기농 무경운 체계를 시행하기

시작하기 

여기에서는 단일한 씨앗을 심지 않으며 어떻게 시작할지에 대해 몇 가지 제안을 하려고 한다. 다음의 아이디어는 새로운 체계에 적응하는 위험을 관리하면서 유기농 무경운 농민으로 성공하려는 여러분에게 도움이 될 것이다. 

독서 및 학습

여러분의 지역에서 잘 자라는 덮개작물에 관하여 최대한 많이 찾으라. 이에는 다른 유기농과 무경운 농민과 이야기를 나누고, 지역의 기술센터에서 이용할 수 있는 자료를 활용하고, 참고 안내서를 참조하는 것이 포함된다.  

지역의 씨앗 탐색

지역에 적응된 덮개작물 씨앗은 이미 여러분의 지역에 적응한 작물이라 여러분에게 유리할 것이다. 겨울에 얼어 죽을 가능성이 낮아지고, 농장에서 더 잘 자랄 수 있다. 지역의 씨앗을 찾는 데 시간이 좀 걸릴 수 있으니 일찍 시작해야 한다. 이는 양이 제한될 수 있기에 유기농 종자의 경우 특히 중요하다. 

실험밭

유기농 무경운의 가장 큰 위험은 새로운 관리 체계와 완전히 새로운 기술로 전환하는 일일 수 있다. 처음 몇 해 동안에는 학습 곡선이 매우 가파를 수 있다. 여러분의 농장에서 작은 실험 구역이나 실험밭을 설정해 시작하는 것도 좋은 생각이다.  

농장 평가

토양의 유형, 심으려는 작물, 보유하고 있는 농기구 및 자원, 새로운 작부체계를 탐구해야 할 시간을 살펴보라. 농장의 변화와 마찬가지로, 지식은 힘이며 새로운 덮개작물 관리 도구가 어떻게 운영될지 이해하는 일이 성공의 지름길이다.  

무경운 경고문

유기농 무경운은 다양한 상황에서 활용할 수 있지만, 여기에는 몇 가지 유의해야 할 사항이 있다. 

질소 정체현상

유기농 무경운은 체계의 질소 순환 방식을 변화시킨다. 분해 과정에서 식물이 일시적으로 질소에 쉽게 접근하지 못하게 된다. 이는 특히 매우 건조한 토양에서 작업할 경우 그러하다. 덮개가 곡류라면 농사철 초기에 질소 정체현상이 나타날 수 있다. 성숙한 덮개작물, 특히 곡류를 갈아엎고자 했을 때에도 질소 정체현상이 나타날 수 있다. 이러한 부작용을 최소화하기 위하여 할 수 있는 몇 가지 방법이 있다. 콩과식물을 덮개작물이나 그 일부로 섞어서 활용하거나, 목초의 덮개작물에 콩과의 환금작물을 심는 것(호밀에 대두)만으로도 유기물 형태로 질소를 보충할 수 있다. 

관개용수 활용

일부 덮개작물, 특히 호밀 같은 경우에는 많은 양의 물이 필요하다. 건조한 곳에서 농사를 짓거나 봄의 눈 녹은 물이나 빗물에 의존하는 경우, 덮개작물이 이용할 수 있는 물의 대부분을 차지하여 환금작물과 경쟁할 수 있으며뒷그루에 충분하지 않은 양의 물을 남길 수 있다. 좋은 소식은 시간이 지남에 따라 무경운 농법이 토양의 유기물 함량을 높임으로써 토양의 건강 상태를 개선하고, 그로 인해 수자원 보존에 큰 도움이 될 수 있다는 사실이다.

불충분한 바이오매스

덮개작물이 듬성듬성 자라면 유기농 무경운 체계가 제대로 작동하지 않는다. 어떤 이유에서든 덮개작물이 제대로 자리를 잡지 못하면, 농부는 덮개작물을 현실적으로 평가해야 한다. 그런 다음 계획처럼 계속하기로 결정하든지,갈아엎는 걸 선택하거나 풀을 통제하기 위해 제초제를 살포해야 한다. 

너무 일찍 굴림

흔히 하는 실수 가운데 하나는 너무 일찍 굴려서 롤러크림퍼로 빈약할 때 죽이게 되는 일이다. 성숙하기 전에 덮개작물이 성숙하기 전에 그냥 굴려 버리는 유혹에 빠지기 쉽다. 특히 나는 덮개작물을 기다리는데 이웃들이 파종준비를 마칠 때 그렇다. 완전히 죽지 않은 덮개작물은 양분과 수분을 빼앗아 환금작물과 경쟁할 수 있다. 

환금작물을 파종하는 문제

파종기가 제대로 작동하는지 확인하는 몇 가지 실험이 필요할 수 있다. 일반적인 어려움은 다음과 같다. 파종기가 덮개작물을 자르지 못한다. 파종기가 씨앗을 흙에 적당히 넣지 못하거나 깊이 조절 바퀴가 들려 있어서, 씨앗이 골에 자리를 잡기 어렵다. 

늦게 심음

덮개작물을 효과적으로 죽이기 위해 봄에 성숙할 때까지 기다려야 하기 때문에, 평소 환금작물을 파종하는 시기보다 더 늦춰야 할 수도 있다. 더 일찍 성숙하는 덮개작물 품종이나 여러분의 특정 지역에 더 잘 어울리는 품종을원할 수 있다. 당신이 북부 지역에 산다면, 봄에 파종할 날이 며칠 안 될 수도 있다. 살고 있는 지역에 따라 북부의 농민에게는 여름에 덮개작물을 재배하는 일이 더 나을 수도 있다. 당신의 농사에 필요한 구체적 특성을 고려하라. 그런 다음 이러한 특성을 나타내는 품종을 찾으라.

차가워지는 토양

덮개작물은 토양에 그늘을 드리워 봄철의 토양을 더 차갑게 만든다. 토마토, 가지, 고추 같이 더운 기온을 좋아하는 작물은 시작이 느려질 수 있다. 하지만 토양의 온도가 연중 일정하게 평탄해지기에 이점이 될 수도 있다. 한번굴리고 쭈그러뜨리면, 덮개작물은 이후 덥고 건조한 농사철에 더 시원하고 촉촉한 토양 상태를 유지하도록 돕는다. 

로데일 연구소의 굴린 털갈퀴덩굴에서 재배하는 유기농 무경운 옥수수

비닐을 벗기자.pdf

-출처: 石基

독일의 남서부 호른슈타드-호른Hornstaad-Hoernle에서 발굴된 보리의 일부분. Credit: Ian Cartwright/Oxford University


유럽의 최초 농민들이 예전 생각보다 훨씬 더 정교한 농법을 활용했다는 연구가 새로 발표되었다. 옥스포드 대학이 이끄는 연구진은 신석기시대의 농민들이 기원전 6000년 무렵에 작물에 거름과 물을 주었다고 밝혔다.


그전엔 철기시대와 로마시대 이전에는 거름을 사용하지 않았다고 추정했다. 그러나 이번 새로운 연구에서는 유럽 전역의 신석기시대 유적 13곳에서 발굴된 탄화된 곡물과 콩 씨앗에서 분뇨에 풍부한 안정 동위원소인 질소 15가 농축되어 있음을 밝혔다. 

그 결과는 Proceedings of the National Academy of Sciences 저널에 발표되었다. 연구에서는 신석기시대의 농민들이 소, 양, 염소, 돼지 같은 가축들의 똥을 작물에 지효성 거름으로 활용했다고 제시한다. 

분뇨 거름은 똥이 천천히 분해되며 오랜 기간에 걸쳐 그 양분으로 작물을 이롭게 하기 때문에 농경지에 장기투자가 이루어져야 한다. 이 새로운 설은 농업에 장기간의 접근이 이루어졌음을 나타낸다. 

저자들은 초기 농민들이 집약적으로 관리된 토지의 고유한 가치를 인식하고 그 후손들을 위해 그를 유지하려 노력했다고 결론을 내렸다. 이 새로운 관점은 식석기시대의 농민들이 농작물을 위해 임시로 농지를 만들고자 화전을 활용하는 유목형 농민들이었다는 기존 학자들의 견해를 뒤엎는 것이다. 

농경을 채택한 일이 사회에 장기적인 영향을 미쳤다는 건 확실한 사실이다. 그러나 유럽의 초기 농경이 지닌 특성과 그것이 사회경제적 변화를 일으키는 데 기여한 역할은 분명하지 않았다. 


주저자인 옥스포드 대학 고고학 학교의 박사 Amy Bogaard 씨는 이렇게 말한다.  

"농민들이 농지에 분뇨를 이용하는 것 같은 장기간의 투자를 했다는 사실은 신석기시대 초기 농경의 특성에 새로운 시각을 제시한다. 농지가 세대를 이어가며 똑같은 가족에게 관리되었을 수 있다는 생각은 상당히 진보적 개념인데, 비옥한 토지는 농작물 재배를 위해 매우 가치 있다고 여겨졌을 것이다. 우린 토지를 상속할 수 있는 필수품으로 여기면서 초기 유럽의 농경사회에서 자산자와 무산자 사이의 사회적 차이를 새로 만들어냈을 것이라 믿는다. 초기 농민 집단의 영토는 극심한 폭력을 수반하는 시기의 사건들을 설명하는 데 도움이 될 수 있다. 독일 탈하임Talheim에서 발굴된 기원전 6000년 후반의 신석기시대 대량 매장지 사례에서는, 토지를 개간하는 데 쓰는 돌도끼를 이용하는 가해자들에 의해 살해된 공동체의 시신이 남아 있다. 

이 연구는 보리, 밀, 렌즈콩, 완두콩 등 124가지 작물들의 약 2500개 샘플의 탄소와 질소 안정 동위원소를 분석한 자료를 기반으로 한다. 검게 탄 건 신석기시대의 불에 탄 가옥에 보존된 것을 발굴한 것이다. 그 샘플들은 기원전 6000-2400년 사이 유럽 전역의 신석기시대 유적지에서 발굴된 것이다. 

이 연구는 또한 초기 농민들의 식생활을 연구하는 데에도 중요한 영향을 미친다. 고고학자들은 당시 사람들이 무엇을 먹었는지 정보를 확인하고자 유골의 안정 동위원소를 분석하는 일에 의존한다. 분뇨에서 발견된 더 무거운 질소-15란 안정 동위원소는 육류와 젖이 풍부한 식생활의 영향이다.

이를 통해 유럽 북서부의 초기 농민들은 동물성 단백질이 풍부한 식생활을 했다고 추정한다. 그러나 이러한 결과에는 예전 생각보다 곡물과 콩 종류에서 유래한 단백질이 더 많아, 신석기시대의 작물들이 그들 식생활에서 주요한 일부였다는 걸 시사한다.

작물의 질소 동위원소 분석은 유럽의 초기 농민들이 그들이 소유한 가축의 숫자와 거름을 운반할 물리적 노동력에 의해 제한되었지만 분뇨를 전략적인 자원으로 활용했다는 걸 보여준다. 이 연구는 농민들이 분뇨를 거의 주지 않거나 아예 없이도 재배할 수 있는 더 튼튼한 작물은 놔두고, 거름으로 가장 많은 이익을 볼 수 있는 작물을 신중히 선택했다는 증거가 있다고 언급한다. 이는 지금까지 거의 인정되지 않은 작물 재배에 대한 지식을 보여준다. 

곡물과 콩 샘플은 유럽 전역에 퍼져 있는 유적지에서 가져온 것이다. 연구에서 다루는 신석기시대 유적지는 영국을 포함해 그리스와 불가리아, 독일, 덴마크 등지에 있다. 

더 많은 정보: Crop manuring and intensive land management by Europe's first farmers, www.pnas.org/content/early/2013/07/10/1305918110

Read more at: https://phys.org/news/2013-07-manure-europe-farmers-years.html#jCp

-출처: 石基

건강한 토양 운동은 최근 뉴스에 실렸는데, 미국 농무부의 연구자 Rick Haney 씨는 그 주요 지지자 가운데 한 명이다. 정부기관과 농산업은 오랫동안 작물의 최대수확량이란 성배를 추구해 왔지만, Haney 씨는 그와는 좀 다른 이야기를 피력한다. 화학비료와 제초제, 살충제 및 기타 화학물질을 사용하여 역대 최고의 생산성을 추구하는 건 우리의 토양을 죽이고 농장을 위협한다는 것이다.


미국 농무부 토양학자 Rick Haney 씨.


텍사스의 미국 농무부 농업연구서비스에서 근무하는 Haney 씨는 인터넷 세미나를 열고, 농민들에게 건강한 토양을 만드는 방법을 가르치며 다닌다.  그의 이야기는 간단하다. 미국은 세계에서 가장 풍요로운 토양을 가지고 있지만, 수십 년에 걸친 농업 학대로 인해 식물에 필수적인 유기물을 만드는 박테리아와 균류를 죽이고 토양의 양분을 고갈시켰다는 것이다. “현재 우리의 사고방식은 화학비료를 주지 않으면 아무것도 자라지 않는다고 생각한다."고 건강한 토양을 검증하는 방법을 개발한 Haney 씨는 말한다. “그러나 그건 사실이 아니며, 결코 그렇지 않다.” 

Yale Environment 360와의 인터뷰에서, Haney 씨는 경운을 덜 하고, 덮개작물을 재배하며, 생물학적 통제로 해충을 억제하는 등의 자연농법을 검증한 연구방법을 설명한다. 트럼프 행정부가 미국 농무부의 예산을 21% 삭감할 것으로 결정한 이때, Haney 씨는 화학비료와 화학물질의 남용으로 이익을 보는 기업들이 지배하는 분야에서 정부 연구의 공평성이 중요하다고 강조했다. 그는 “우린 더 많은 독립적 연구가 필요하다”고 주장한다. “우리가 토양의 기능과 그 생물학에 대해 아는 건 빙산의 일각일 뿐이다.”


Yale Environment 360(이하 문): 토양을 향상시키기 위해 농민들과 일해 왔는가?

Rick Haney(이하 답): 그렇다. 우린 지난 50년 동안 유기물 수치 -토양의 건강과 비옥도 측정의 기준- 가 줄어들어 왔음을 밝혔다.  그건 시급한 일이다. 일부 농지에서는 1% 이하로 나타나기도 하는데, 바로 옆의 목초지에서는 유기물 수치가 5-6%에 이르기도 한다. 이건 우리가 이 체계를 얼마나 급격하게 변경시켰는지 보여준다. 우리가 토양의 유기물을 파괴하고 있으며, 이 지구상에 생명을 유지하려면 이를 되돌려야 한다.  

좋은 소식은, 기회가 주어지면 토양이 회복된다는 점이다. 토양은 매우 활기차고 탄력적이다. 우리가 고칠 수 없는 지점까지 파괴한 것 같지만 그렇지 않다. 건강한 토양 운동은 그러한 유기물 수치를 회복하여 토양을 더 건강한 상태로 만들고자 한다.


문: 토양의 질이 이렇게 나빠진 건 왜인가? 

답: 많은 경운에 덮개작물도 없고, 집약적(화학물질 의존적) 농법으로 토양이 제대로 기능하지 못하는 것이라 생각한다. 생물학이 별로 할일이 없다. 우리가 필요로 하는 만큼 이행되지 않는다. 우린 근본적으로 토양의 기능을 파괴하고 있어서, 이 작물을 계속 재배하려면 점점 더 많은 합성비료를 주어야만 한다.  


문: 그럼 그건 마치 마약중독 같아서 해마다 더 많은 양이 필요한가?

답: 바로 그렇다. 지난 50년 동안 수확량이 많이 늘었지만, 그건 점점 더 많은 외부투입재를 사용해서이다. 그건 지속가능하지 않으며, 장기적으로는 효과가 없을 것이다.  


문: 농민들은 토양이 고갈되어 화학비료가 필요하다고 한다. 

답: 우리가 화학비료를 살포하여 이러한 많은 수확량을 올리고 있기에 체계가 작동하는 것처럼 보였다. 우리가 멕시코만의 죽음의 구역을 목격하면서부터, 그것이 정말 제대로 작동하고 있는 건지 의심하기 시작했다.  우리가 너무 많은 화학비료를 주는 게 아닐까? 그 답은 “그렇다”이다. 그건 마치 아이들에게 균형 잡힌 식단을 제공하는 대신 비타민만 먹이는 것과 같다. 그게 효과가 있을까?? 

현재 우리의 사고방식은 화학비료를 주지 않으면 아무것도 자라지 않는다는 것이다. 그러나 그건 사실이 아니다. 결코 그렇지 않다. 이들 가운데 가장 큰 문제는 계속해서 더 많은 수확량을 바란다는 점이다. 그러나 현실은 자기 무덤을 파고 있다는 것이다.  


문: 왜 그런가?

답: 자, 만약 우리가 가격을 보며 옥수수, 밀, 대두, 수수 등을 과잉생산한다고 하자. 왜 가격이떨어지는가? 지금 당장, 이 주변의 사람들이 옥수수를 재배하고 있어, 내가 그들 몇 명과 이야기를 나누었더니 올해는 수익이 별로 없을 거라 한다. 그들은 손해를 보고 있다. 말도 안 된다.농산물을 과잉생산하면 가격이 하락한다. 그래서 우린 무얼 하고 있는가? 

지난주에 이야기를 나눈 사람이 있는데, “건강한 토양의 원리를 적용하면 수확량이 떨어질 것이다”라고 하더라. 그래서 내가 “그래요, 그렇겠죠. 난 모든 사람들의 수확량이 떨어지길 바라요.” 했다. 수확량을 높이고, 높이고, 높여야 한다고만 생각한다. 계속 그렇게 할 수는 없다.  


문: 그럼 수확량 증가에 대한 집착이 농민의 수익을 파괴했으며, 궁극적으로 농업이 의존하는토양을 고갈시켰다는 것인가?

답: 두말하면 잔소리다. 이런 농상품을 적당히 생산했다고 치자. 그럼 가격이 오를 것이고, 농민들은 실제로 이를 통해 수익을 낼 수 있다. 농민들은 매출 가운데 수익이 적다. 그래서 우리가 화학비료를 더 효율적으로 사용해 똑같은 양의 농산물을 생산할 수 있다면, 모두에게 이롭다. 화학비료를 많이 뿌릴 필요가 없는 건강한 토양을 회복시켜 자연에 맞서는 대신 그와 함께일해야 한다. 


문: 농약은 어떤가. 토양의 생물학적 활성에 해가 되는가?

답: 그렇다. 그건 마치 항암요법 같다. 그건 대상이 있는 게 아니라 모조리 죽인다. 우리가 살균제와 살충제를 사용하면 토양에서도 비슷한 일이 발생한다. 살충제는 해충만이 아니라 익충도 죽인다. 살균제는 유익한 미생물을 포함해 모든 균류를 죽인다. 그러나 균류는 매우 중요하다. 우린 균류를 다시 데려와야 한다. 우리가 전에 보지 못한 가장 비옥한 숲에 들어가면, 낙엽들을 걷어내면 어디에서는 균류를 볼 수 있다.


문: 자연을 통제하려는 노력이 종종 역효과를 낸다.

답: 우리의 접근방식은 많은 화학물질을 넣고 경운하여 그곳에서 일어나는 일을 조작하는 것이다.  자연은 언제나 결국엔 승리한다. 우리는 풀이나 곤충을 죽이기 위한 방안을 생각해 낼 수 있지만, 자연은 그 주변에서 방법을 찾아내기에 결국 무언가 다른 걸 찾아야만 한다.  요즘 글리포세이트 계통 제초제에 내성을 개발한 풀들이 나타나는 걸 보라. 

일반적인 프로그램에서는 “우리가 바라는 걸 더 효율적으로 재배하도록 돕는 많은 다양한 것을 기르자.”고 하는 대신, “모든 걸 죽이고 우리가 원하는 걸 재배하자”고 한다. 그건 매우 다른 사고방식이다. 우린 자연계와 맞서 싸우지 말고 그와 협력해야 한다.  


문: 너무 많은 화학비료가 토양의 생물을 교란시키는가?

답: 난 그렇다고 믿는다. 우린 그걸 본다. 그러한 농지에서 미생물의 활성은 떨어지고, 유기물은 적다. 많은 질소 투입재가 토양의 탄소를 파괴한다는 걸 밝힌 연구가 있다. 미생물은 여분의 질소를 활용하여 탄소를 뜯어내기에, 토양에 탄소를 격리시키기보단 많은 양의 이산화탄소를 방출시킨다.  그래서 과도한 질소가 실제로 더 많은 탄소를 체계 밖으로 방출시킨다는 증거가 있다. 하지만 우린 토양에 더 많은 탄소가 필요하다. 


문: 파리 기후협약은 토양의 탄소를 매년 0.4%씩 증가시킬 것을 요구했다. 그러면 우린 어떻게 해야 하는가?

답: 우린 열대우림을 베어내지 말고 나무를 심어야 한다는 이야기를 많이 들었다. 그건 중요하다. 그러나 우린 -전 세계에- 아무것도 놓여 있지 않은 흙이란 거대한 자원을 가지고 있다. 우리가 거기에 식물을 심으면, 그들이 대기에서 탄소를 빨아들여 토양에 넣기 시작한다. 그건자연적인 과정이다. 

우린 토양을 절대로 벌거벗겨 놓으면 안 된다. 당장 농민들은 자신의 농지를 일 년 중 대부분 벌거벗겨 놓는다. 그들이 다양한 작물만이 아니라 많은 종류의 덮개작물 등을 심는다면, 미국에서 옥수수와 밀을 재배하는 1억5000만 에이커의 토양에다 대기에서 탄소를 격리시켜 넣을 수 있다. 우린 엄청난 양의 탄소를 토양에 되돌릴 수 있을 것이다. 


문: 덮개작물도 많은 양분을 토양에 되돌려준다. 예를 들어, 콩과식물은 토양에 질소를 풍부하게 만든다. 

답: 그렇다. 그리고 탄소도 마찬가지다. 이는 농민들이 화학비료를 갖기 전에 하던 일이다. 내가 박사학위를 받을 때, 1910-1930년대 논문을 많이 인용했다. 그때 이미 토양의 생물학적 구성을 연구했고, 그것이 얼마나 중요한지 알고 있었다. 그 이후 합성비료가 나왔고, 우린 그 모든 것을 잊어버렸다. 그냥 무시했다. 

현재 우린 농민들이 농작물 생산에서 제외시키도록 하여 그대로 보존하면 보조금을 지불하는 체계가 있다. 수확한 뒤 덮개작물과 함께 이를 재배하여 모든 것이 얼 때까지 그걸 자라게 두어 겨울을 나도록 해야 한다. 그리고 다른 농민들이 그 땅에서 방목을 하도록 계약할 수 있는데, 그곳에 덮개작물을 심고 가축을 넣으면 예전 버팔로가 살던 대초원이었을 때처럼 중서부 지역이 재생되기 때문이다. 가축을 거기에 넣으면 실제로 토양의 건강이 증진된다. 


문: 토양을 검증하는 새로운 방식을 개발하는 일을 도왔다. 왜 그게 필요한가?

답: 지금까지 우린 올바른 구성요소들을 검증하지 않았다. 우린 기본적으로, 예를 들어 질소와 인산의 생물학적 기여를 무시해 왔다. 문헌의 추산에 따르면, 1그램의 흙에는 600-1000만개의 유기체가 있다. 그들 없이는 아무것도 자라지 않을 것이다. 미생물은 탄소 이후이다. 식물의 뿌리는 미생물을 끌어당기는 탄소화합물을 유출할 것이다. 그와 함께 미생물은 식물이 이용할 수 있는 형태의 질소와 인산을 제공하는 유기물을 분해한다. 그래서 식물 뿌리의 주변에 이상적인 양분 순환이 일어난다. 그걸 우리가 새로운 검증 방식으로 실험실에서 재현하려고 시도한 것이다.   

우린 토양을 건조시키고 난 뒤 그걸 다시 적시어 24시간 동안 나오는 이산화탄소(박테리아의 활동으로 생산됨)의 양을 측정한다. 그 이산화탄소의 양이 건강한 토양의 상태와 직접적으로 비례한다.아주 아주 간단하다. 


문: 농민들이 자기 농지의 생물학적 기능이 저조한 걸 본다면, 당신이 말한 농법을 실천하도록 할 수 있겠는가? 

답: 우리의 일은 농민들이 이러한 변화를 만들도록 자신감을 주는 것이다. 우린 “12만 평만 실험해 보라고 한다. 이걸 240만 평 전체에 하라고 권하지 않는다. 걸음마 단계를 활용한다. 그리고 그게 효과가 있으면 채택하라고 이야기한다.” 나에게 이렇게 말한 사람들이 있다. 당신 덕에 작년에 6만 달러의 비료값을 절약했다고 말이다. 그래서 난 이렇게 답했다. “아니요, 당신이 자료를 믿고 선택했기에 돈을 절약했지요.” 우린 그런 전화를 많이 받는다. 그 사람들은 충격을 받는다.  


문: 결과가 빨리 나타나는가?

답: 늘 그렇지는 않다. 건강한 토양 운동은 이제 막 시작되었는데, 사람들은 2-3년 안에 토양을 변형시킬 것이라 말하고 있다. 음, 기본적으로 토양을 파괴하는 데 50년 걸렸으니 그걸 회복시키는 데에는 2-3년 이상 걸릴 것이다. 그래서 우린 길게 보며 이 일을 해야 한다. 그러나 방향은 분명하다.


문: 우린 어디로 가야 하는가?

답: 우린 더 독립적인 연구가 필요하다. 우리가 토양의 기능과 생물학에 대해 이해하는 건 빙산의 일각일 뿐이다. 이제 시작단계이며, 토양에서 일어나는 일이 무엇인지 안다고 말하는 사람이 있다면 거짓말이거나 무언가를 판매하려는 사람일 것이다. 토양은 역동적인 살아 있는 체계이기 때문에 그 모든 상호작용을 이해하는 건 매우 복잡하다. 


문: 새로운 정부는 여러 기관에서 과학연구 예산을 대폭 삭감하겠다고 했다. 이 프로그램에 영향을 줄 것이라 보는가? 

답: 나의 연구 예산은 삭감, 삭감, 또 삭감되었다. 정부에게 엄청난 돈을 달라고 하는 게 아니다. 단지 우리가 제대로 일할 수 있도록 해달라. 우리가 민간기업에서 하는 모든 연구를 할 수는 없다. 기업의 자금을 지원받는 연구는 공평성을 보장할 수 없기에 정부에서 그 간극을 메워야 한다.


문: 농업계는 살충제와 화학비료를 판매하는 데 큰 관심이 있다. 그들이 그 제품을 덜 사용하는 방법을 연구하는 일에 자금을 투입할 가능성은 없다. 

답: 바로 그렇다. 나의 우려는, 요즘 정치가 진보적이지 않다는 것이다. 모두 즉각적 만족이다. 장기적인 정책 목표가 없다. 그건 현명하지 않다. 그건 미국 창립자들의 사고방식이 아니다. 그들은 길을 내려다보았다. 어떻게 된 것인가? 

-원문출처: http://e360.yale.edu/features/why-its-time-to-stop-punishing-our-soils-with-fertilizers-and-chemicals

-출처: 石基


중동에서 행한 고고학 발굴은 세계의 초기 도시들이 어떻게 성장하고 발전했는지 기록된 고대의 수확물을 밝혀냈다. 

Nature Plants에 발표된 연구는 현재 시리아의 북부인 메소포타미아에서 세계에서 가장 오래된 도시가 성장했다는 사실을 뒷받침하는 농업과 정치경제적 측면의 새로운 시각을 제시한다. 

옥스포드 대학의 연구진은 고대 곡물을 탄소 및 질소 동위원소를 이용해 분석하여 작물이 재배될 당시의 환경을 재구성하고, 시간이 지남에 따라 농법이 어떻게 바뀌었는지 그려냈다.  

그들은 초기 도시의 인구가 증가하면서 식량 수요가 늘어나자, 농민들은 더 집약적으로 관리된 기존 농지로 자원들 —분뇨 같은— 을투하하기보다는, 더 넓은 면적의 토지를 경작하려고 노력했다. 

광활한 토지에 굶주린 농업은 강력한 가족관계와 사회제도에 의해 독점될 수 있는 경작지에 접근하고, 쟁기질에 전문화된 가축을 이용하는 능력에 크게 의존했다.  

따라서 이 연구의 결론은 소수의 통치자에 의해 통제될 수 있는 경작지의 중요성이 어떻게 커졌으며, 도시의 인구가 증가함에 따라 사회적 불평등으로 이어졌는지 밝혔다. 

프로젝트를 이끈 옥수포드 고고학 학교의 교수 Amy Bogaard 씨는 이렇게 이야기한다.  

"고고학 유적지에 묻혔다 발견된 각각의 곡물들은 그것이 재배된환경조건에 대한 기록이 담겨 있다. 여러 고대 유적지에서 발견된 많은 곡물 샘플들을 연구하면 초기 도시들의 성장과 쇠퇴에 따라 농업이 어떻게 변모했는지, 특히 성장하는 도시의 인구를 먹여살리기 위해 대처한 방법을 그려볼 수 있다. 우린 메소포타미아 북부에서 초기 도시들의 성장이 농업 규모의 급진적 확장에 의존했다는 사실을 밝혔다. 그 결과, 곡물들은 점차 열악한 토양 조건에서 재배되었다. 예를 들어, 거름과 양분의 보충이 더 적어졌다. 그건 광대한 도시 밀집지대를 개발할 수 있는 해결책이었지만, 환경이나 정치 상황이 바뀌면 위험에 빠졌다. 선사시대의 농민들이 변화하는 환경에 어떻게 대처했는지 조사하는 일은 현재 인구 증가와 환경 변화라는 유사한 압력에 직면해 있는 오늘날에도 유용한 조언을 제공할 수 있을 것이다." 

----------

메소포타미아 지역에서 발굴된 고대의 곡물을 분석하니, 그 곡물들이 부족한 양분으로 재배했다는 결과가 나옴. 그를 통해 그 당시 사회가 농업의 집약화가 아니라 농경지의 확대를 통해 도시의 밀집화를 해결했다는 그림을 그리는 논문. 하지만 곡물을 재배하는 환경의 변화나 광대한 토지를 이용할 수 있는 정치사회적 변화가 일어나면 더 위험한 상황에 빠질 수 있다는 점을 간과할 수 없다. 예전에 경제학 강의에서 세종의 대단함이 바로 거기에 있었다고 평가하는 이야기를 들은 적 있다. 세종은 성장하는 인구의 더 많은 식량 수요를 외연 확대 -영토의 확장, 이웃 국가로의 진출, 침략 등- 가 아니라 농업의 집약화 -농서 간행, 농법 개량 등- 를 통해 해결했다는 점이라고 말이다.  

흥미롭다.농사에 이용할 수 있는 자원 -분뇨, 퇴비 등- 은 한정되어 있는데 경작할 수 있는 토지는 넓었던 당시엔 이런 선택이 당연했을 것이라 생각된다. 

- 원문출처: https://phys.org/news/2017-06-ancient-grain-tale-ancestors-cities.html#jCp

- 출처: 石基

특징


감자는 자잘한 잔뿌리가 발달한다. 이 뿌리는 기껏해야 60cm 정도이다. 그래서 120cm 정도의 뿌리를 내리는 곡식 종류에 비해 감자의 뿌리는 얕은뿌리이다. 그래서 감자는 땅속 깊이 있는 수분이나 양분을 빨아들이기 어렵다. 


감자는 토양의 온도가 10-35˚C일 때 뿌리가 활발히 성장하고, 뿌리의 발달이 최고조인 건 토양의 온도가 15-20˚C 사이일 때이다.

잎(줄기)의 성장은 7-30˚C 사이일 때 일어나는데, 최적인 온도는 20-25˚C에서이다. 기는줄기(포복지)가 성장하는 데에 최적인 온도도 이와 비슷하다.


토양의 온도가 뿌리의 발달에 미치는 영향



감자의 덩이줄기는 기는줄기가 팽창한 것이다. 이러한 덩이줄기는 짧은 낮의 길이(광주기)로 촉발되어 발달하기 시작하며, 성장호르몬을 분출한다. 토양의 온도가 더 낮으면 더욱 빨리 덩이줄기가 발달하고, 더 많은 덩이줄기가 만들어진다. 덩이줄기에게 최적인 토양 온도는 15-20˚C이다.


이러한 조건에서 감자는 짧은 기는줄기와 싹 들을 가지게 된다. 긴 낮의 길이는 덩이줄기의 발달을 늦추지만, 기는줄기와 싹의 성장에는 이로운 조건이다. 높은 온도도 덩이줄기가 형성되는 걸 방해한다. 만생종은 긴 낮의 길이나 높은 온도에 더 민감한 경우가 많다.  


감자 식물체에 질소가 적고 자당이 많으면 덩이줄기가 더 많이 생긴다. 

덩이줄기는 한번 생기면 빠르게 자라 온대 기후에서 최대 567kg/1200평/일에 이른다. 아래의 도표를 참고하라. 


발아 이후 덩이줄기의 성장



생리학적 숙성


싹이 튼 씨감자를 심으면 작물의 성장을 촉진시킬 수 있다. 이러한 반응의 정도와 수확량 증가의 효과는, 심을 때 씨감자의 생리학적 연령이 어떠한지와 관련이 있다. 

씨감자의 저장 온도는 생리학적 숙성을 조절하는 핵심이다. 저장 온도를 4˚C 이상으로 올리면 씨감자가 휴면에서 깨어나 싹의 성장이 촉진된다. 


이렇게 휴면에서 깨어난 날이 축적될수록, 씨감자를 심을 때 덩이줄기의 생리학적 연령이 결정된다. 


씨감자를 심기 이전에 원하는 수준으로 숙성시키는 정도는 품종별로 다르다.

오래 숙성된 덩이줄기는 조생종을 심을 때나 재배기간이 짧을 때 유리하다. 

최소한으로 숙성시킨 덩이줄기는 수확량을 최대로 올리고자 감자를 재배하는, 재배기간이 긴 지역에 적합하다.


싹이 난 씨감자를 심을 때는 감자 식물체의 간격을 확보해 최적의 성장을 보장하고, 싹에 손상을 최소화하기 위하여 싹의 숫자와 길이(최대 2cm)를 조절해야 한다. 


토양의 유형과 관리



감자는 보수력이 저마다 다른 모래흙부터 찰흙까지 다양한 토양에서 재배된다. 감자를 재배하기 이상적인 토양은 뿌리가 적절히 숨을 쉴 수 있고, 뿌리의 질병 감염을 최소화하여 덩이줄기가 발달할 수 있는 물빠짐이 잘 되는 구조의 토양이다. 


감자는 pH 5.5-7.0이며 염도가 낮은 토양을 좋아한다. 그러나 감자는 실제로는 pH 4.5-8.5의 토양에서 재배되어, 특정 영양분의 가용성에 뚜렷하게 영향을 미친다. 토양의 pH가 너무 지나치면 여러 방법으로 조정해 주는 것이 좋다.


토양의 pH가 양분의 가용성에 미치는 영향



낮은 pH(산성)에서 감자는 알루미늄과 기타 중금속의 독성만이 아니라, 제한된 인 또는 몰리브덴 가용성으로 고생할 수 있다. pH 7.5 이상(알칼리)에서는 영양분의 가용성, 특히 인과 미량원소가 토양에 충분히 있더라도 그 가용성이 떨어지게 된다. 석회로 토양을 개선할 수 있는데, 적어도 감자를 심기 6개월 전에 뿌려서 산성인 토양을 확실하게 개선해야 한다. 높은 pH의토양에서 재배된 감자는 일반적으로 더뎅이병이 많이 발생하는 경향이 있다. 


농기계로 석회 살포



두둑짓기와 북주기


감자는 두둑이나 둔덕에 심는데, 이는 물빠짐과 통기가 잘 되게 하여 작물의 성장을 돕기 위함이다.

차가운 토양에서 두둑짓기는 토양의 온도를 높여 싹이 더 빨리 트고 초기 성장이 좋아지게 한다.

웃거름을 주면서 덩이줄기 주변의 토양에 비료를 넣고 북을 주면서 두둑을 다시 손보게 된다. 


또한 북주기는 덩이줄기가 최대로 퍼지도록 도우며 빛을 받아 푸르게 되는 걸 막고, 덩이줄기가 더 잘 형성되고 크기가 균등하게 잡히도록 하며 손상의 위험도 줄인다.  


감자 북을 주는 농기계


북을 주어 물빠짐도 잘 되게 하고, 수확도 쉽게 만든다.



물 관리


감자가 커질 때는 1주일에 약 3cm 정도로, 물을 많이 필요로 한다. 그래서 다수확을 위해서는 관개를 하는 게 유리하다.   


물 관리는 덩이줄기의 문제를 최소화하는 것이 핵심이다. 덩이줄기가 발달할 때 두둑에 수분을 유지하면 더뎅이병이 생기는 문제를 최소화할 수 있다. 농사철 막바지에 덩이줄기 근처에 물이 너무 많으면 흰가루반점병이나 피목이 생기기 쉽다. 


더뎅이병


물이 너무 많아 피목이 발생



두둑 안의 토양 수분 상태가 고르지 않으면 덩이줄기의 모양이 울퉁불퉁해지고, 기형과 갈라짐이 발생한다. 토양 수분 상태에 10%만 차이가 있어도 심각해질 수 있다. 이러한 이유로, 점적관개를 활용할 때는 두둑 상단에 설치해야 한다. 


줄기와 잎을 관리하는 일도 물의 효율성을 최대화하는 데 중요하다. 고온의 환경에서는 토양 표면에서 수분이 증발되어 손실되는 걸 최소화하기 위하여 잎과 줄기가 자라 빨리 그늘이 지도록 관리해야 한다.


토양 수분이 불균등하면 덩이줄기에서 2차 성장이 시작될 수 있다.


물이 너무 많으면 감자가 갈라진다.



감자의 보호


겹무늬병과 잎마름병이 감자에 치명적인 주요 질병이다. 


무늬병



겹무늬병은 잎부터 어린 덩이줄기에 퍼지는데, 특히 조생종에게 큰 문제가 된다. 잎을 심각하게 말려 버리는데, 제대로 관리하면 감염되지 않도록 할 수 있다.  

잎마름병은 차고 습한 조건에서 발생하고, 통제가 안 되면 덩이줄기로 빠르게 퍼져 덩이줄기가 갈변하고 썩어 버린다.


또 다양한 모자이크 바이러스도 감자 잎의 성장에 영향을 미쳐 수확량을 떨어뜨린다. 진딧물과 이를 옮기는 매개체도 통제해 피해를 최소화해야 한다. 

또한, 다양한 독립생활 선충 들과 감자 시스트 선충도 치명적인 손상을 불러올 수 있다. 감자의 손실을 최소화하려면 다양한 작물을 돌려짓기하는 게 좋다. 


흑지병이 뿌리를 손상시킴


흑지병이 퍼진 밭

石基


[ 쌍떡잎식물 통화나물목 가지과의 여러해살이풀 ]

세계에서 네 번째로 많이 생산되는 곡물이다. 하지감자, 지실, 북감저(北甘藷), 마령서(馬鈴薯)라고도 한다. 원산지는 남미 안데스 지역인 페루와 북부 볼리비아로 알려져 있으며, 주로 온대 지방에서 재배한다. 식용하는 부위는 덩이줄기로, 대표적인 구황작물(救荒作物) 중 하나이다.

감자는 현재 재배되고 있는 식물 가운데 가장 재배 적응력이 뛰어난 식물로 알려져 있는데, 해안가에서부터 해발 4,880m의 히말라야나 안데스 고산지대에서까지 재배되고 있으며, 기후지대별로는 아프리카의 사하라 사막에서부터 연중 대부분 눈이 덮여 있는 그린란드에서까지 재배되고 있다.​


6월경에 잎겨드랑이에서 긴 꽃대가 나와 취산꽃차례를 이루고 지름 2∼3cm 되는 별 모양의 5갈래로 얕게 갈라진 엷은 자주색 또는 흰색의 꽃이 핀다. 꽃이 진 뒤에 토마토 비슷한 작은 열매가 달린다. 

삶아서 주식 또는 간식으로 하고, 굽거나 기름에 튀겨 먹기도 한다. 소주의 원료와 알코올의 원료로 사용되고, 감자 녹말은 당면, 공업용 원료로 이용하는 외에 좋은 사료도 된다.


성분은 덩이줄기에 수분 75%, 녹말 13∼20%, 단백질 1.5∼2.6%, 무기질 0.6∼1%, 환원당 0.03mg, 비타민 C 10~30mg이 들어 있다. 질소화합물의 절반을 차지하는 아미노산 중에는 밀가루보다 더 많은 필수 아미노산이 함유되어 있다. 그리고 날감자 100g은 열량 80cal에 해당한다.

덩이줄기의 싹이 돋는 부분은 알칼로이드의 1종인 솔라닌(solanine:C45H73O15N)이 들어 있다. 이것에 독성이 있으므로 싹이 나거나 빛이 푸르게 변한 감자는 많이 먹지 않도록 주의해야 한다. 

8년 이상 ‘직접 농사지은 땅’ 인정땐 전액감면

거주여부는 주민등록초본 자경은 농협거래 통해 입증


기간 8년은 ‘합산’ 개념 총급여 3700만원 넘으면 자경기간서 제외돼 주의


농지가 도시지역 편입땐 편입일까지 양도소득만 대상


농지를 팔 계획이 있는 농민이라면 양도세 전액을 감면받을 수 있는 조건에 관심을 기울일 필요가 있다. 양도세 감면요건들을 잘 알아놓는다면 미리 준비하는 지혜를 발휘할 수 있기 때문이다. 양도세를 감면받으려면 기본적으로 8년 이상 직접 농사를 지어야 한다는 조건에 부합해야 한다. 자경여부·자경기간·농지여부·감면한도 역시 양도세 감면을 위한 필수 점검 항목이다.



자경농민과 농지의 인정 기준은

양도세를 전액 감면받는 데 핵심은 ‘재촌자경’이라는 개념이다. 재촌자경이란 간단히 말해 농민이 농지 소재지에 살면서 직접 농사짓는 것을 의미한다. 

자경농민의 거주지가 ▲농지가 위치한 시·군·구 ▲농지가 위치한 시·군·구에 바로 붙어 있는 다른 시·군·구 ▲해당 농지로부터 직선거리 30㎞ 이내 지역 가운데 한곳에 포함돼 있으면 된다.


‘자경’의 개념도 생각보다 좁게 해석된다. 2006년 개정된 조세특례제한법에 따르면 직접경작을 ‘거주자가 소유농지에서 농작물 경작에 수시로 종사하거나 농작업 중 2분의 1 이상을 자기 노동력에 의해 경작하는 것’이라고 정의했다. 임대를 주지 않고 자기 책임하에 농사를 지어야 자경으로 보겠다는 뜻이다. 이런 점에서 함께 사는 배우자·자녀가 직접 농사일을 한다고 해도 이를 본인의 노동으로 인정받을 수 없다. 

김종필 세무사는 “거주여부는 주민등록초본으로 증명할 수 있고 자경여부는 농지원부, 농약·비료·종자 등 농협과의 거래내역, 이장으로부터 받은 자경확인서 등을 제출하면 입증이 가능하다”고 설명했다.


자신이 소유한 땅이 농지로서 요건을 갖추고 있는지도 따져볼 필요가 있다. 농지라고 하면 토지대장에 사용목적이 논·밭·과수원 등으로 등재돼 있는 것을 말한다. 양도세를 징수할 때 보통 이러한 지목을 기준으로 삼지만 실제 소유한 땅이 농지로서 기능을 할 경우에도 인정한다. 


예를 들어 임야를 개간해 이를 과수원으로 만들어 농사를 짓고 있다면 양도세 감면 대상이 될 수 있는 것이다. 이밖에 농사에 필요한 농로·수로·저수지·농막·퇴비사가 차지하는 공간도 농지로 볼 수 있다.


김 세무사는 “다만 양도일 이전에 매매계약조건에 따라 매수자가 형질변경·건물착공 등을 했다면 양도일이 아닌 매매계약일 시점에서 농지에 해당하는지를 보면 된다”고 조언했다.



‘8년’ 자경기간 계산법과 예외조항은

‘농지 소유주가 8년간 농사를 지어야 한다’는 조건도 자세히 짚어봐야 한다. 몇가지 예외조항이 있기 때문이다. 


먼저 자경기간은 취득일로부터 양도일까지의 보유기간 가운데 소유자가 직접 농사를 지은 기간만을 합산해 계산한다. 양도일 시점에 굳이 농사를 짓지 않아도 상관없다. 보유기간 내 8년만 채우면 된다. 


매매가 아닌 상속일 경우에는 조건이 다소 달라진다. 이때는 상속인(상속받는 사람)과 피상속인(상속하는 사람)의 자경기간을 합산해 8년을 넘으면 된다. 다만 상속일로부터 3년 이내에 다른 사람에게 양도하게 되면 상속인의 자경여부와 관계없이 피상속인의 자경기간만을 합산하지만, 3년이 지나 양도하는 경우는 상속인이 1년 이상 쉬지 않고 영농활동을 해야 피상속인의 자경기간이 인정된다.


김 세무사는 “사업소득·근로소득의 총급여 합계가 3700만원을 넘어가는 과세기간은 자경기간으로 인정받을 수 없다”며 “이는 상속인·피상속인 모두에게 해당하는 예외조항인 만큼 주의가 요구된다”고 말했다.



농지가 도시지역으로 편입됐을 때 양도세 감면혜택은

자신이 가지고 있는 농지가 도시지역(주거지역·상업지역·공업지역)으로 편입된다면 양도소득세 감면을 받을 수 있을까.


소유기간 동안 농지의 성격이 바뀌는 경우 취득일로부터 편입일까지 발생한 양도소득에 한해서는 감면을 받을 수 있다. 만약 편입된 지역이 특별시·광역시·시지역이라면 편입일로부터 3년이 되기 전까지 양도해야 한다. 그렇지 않으면 취득일로부터 편입일까지 발생한 양도소득에 대한 감면도 받을 수 없게 된다.


앞에서 언급한 조건들을 모두 다 충족시켰다 하더라도 무제한으로 양도세를 감면해주지는 않는다. 양도세를 100% 감면받을 수 있는 총 한도는 자경농지와 대토(기존 농지를 판 후 새롭게 산 농지)에 대한 감면세액을 합해 1년간 1억원, 5년간 3억원까지다.


가령 ㄱ씨가 8년 이상 자경한 1억5000만원 상당의 농지를 올해 안에 양도할 계획이 있다면 1억원분에 한해서 양도세가 감면되고 나머지 5000만원에 대한 양도세를 부담해야 한다는 이야기다. 물론 ㄱ씨가 1억원 한도 내에서 2년에 걸쳐 분할매도한다면 전액 감면받을 수 있는 길이 열린다.


'농사' 카테고리의 다른 글

감자 Potato  (0) 2017.04.21
농지 양도소득세 100% 감면조건  (0) 2016.10.27
혼농임업, 나무와 농작물의 상생  (0) 2014.08.01
[만주의 자연] 인간 · 기후 · 지리  (0) 2014.08.01


프랑스 남부의 혼농임업 체계(포플러나무와 밀의 사이짓기). 

이 체계는 두 작물을 따로 농사지을 때보다 단위면적당 더 많은 곡물과 목재를 생산한다.



숲에 있는 나무의 숫자는 계속해서 줄어들고, 농장에 있는 나무의 숫자는 늘어나고 있다.


2011년 2월 3일, UNFF9의 High Level Dialogue에서 연설한 세계혼농임업센터의 임원인 Dennis Garrity가 혼농임업으로 알려진 방법인 농업에 나무를 혼합하는 중요성을 강조했다.


"농경지의 10억 헥타르 이상 세계 농경지의 거의 절반은 10% 이상 나무로 덮여 있고, 1억 6000만 헥타르는 50% 이상 나무로 덮여 있다."고 개리티는 말한다.


농장에서 나무를 기르는 것은 농부에게 식량, 수입, 사료, 약품만이 아니라 땅심을 높이고 물을 보전하는 것까지 제공할 수 있다. 자연의 식물과 숲은 농업과 다른 형태의 개발을 위해 나무를 농업과 관련한 생산적인 조경에 넣음으로써 가장 지속적인 이익을 제공한다. 


"혼농임업은 임업과 농업 사이의 중대한 가교이다. 본질적으로 혼농임업은 농업의 조경에서 작용하는 나무의 역할에 관한 것인데, 특히 소규모 농장에만 국한된 것이 아니다."



전반적인 생산성


앞으로 20년에 걸쳐서 세계의 인구는 평균 1년에 1억 명 이상 늘어날 것으로 예상된다. 그 증가의 95% 이상은 땅과 물에 대한 압력이 이미 극심한 개발도상국에서 일어날 것이다. 


그래서 국제사회가 직면한 중요한 도전은 우리 모두가 기반하는 자연 자원을 보호하면서 현재와 미래세대를 위해 식량 안보를 확실히 하는 것이다. 농장의 나무는 그 도전과 관련하여 중요한 요소가 될 것이다. 


동남아시아와 중앙아메리카와 같은 지역에서, 농경지를 덮은 나무는 현재 30%를 초과한다. "혼농임업으로 변화하는 농업은 세계에서 진행중이다."라고 개리티는 말한다. "그리고 기후변화를 포함한 이 변화를 확실하게 하는 동인은 앞으로 속도를 낼 것이다. 나무를 포함시킨 농업 체계는 더욱 빈번해진 가뭄에도 불구하고 전반적인 생산성과 수입을 높일 것이기 때문이다. 그리고 혼농임업 체계는 다른 어떤 기후 완화를 위한 농업보다 더 많은 이산화탄소를 상쇄할 기회를 제공한다."


많은 나라에서 혼농임업은 현재 농장에서 행하는 임업의 미래를 매우 명백하게 한다. 인도와 케나 및 여러 나라에서 국가의 주요한 목재를 농장에서 기른 재목에서 얻는다. 


천 년 동안 농부에 의해 실시된 혼농임업은 농장과 농촌의 조경에서 나무를 길러 생기는 광범위한 작용에 초점을 맞추고 있다. 

거름을 제공하는 나무는 토지의 재생, 흙의 건강, 식량 안보로 이어지고, 과일을 제공하는 나무는 영양을, 사료를 제공하는 나무는 소농의 가축 생산을 개선한다. 목재와 땔감을 제공하는 나무는 주거와 에너지로, 약을 제공하는 나무는 질병과 싸우기 위한 수지나 유액을 생산한다.


늘푸른나무 농업은 작물과 함께 나무를 통합한 혼농임업의 형태이다. "우리는 늘푸른나무 농업이 가장 근본적이며, 농업을 재고하기 위해 매우 실천적인 방법이라고 본다."라고 개리티는 말한다. "우리의 여러 식량 작물을 나무로 가득한 덮개 밑에서 기르게 되는 것이 미래의 모습이다."


농법을 보호하는 것과 함께 거름을 제공하는 나무를 결합시키는 일은 아프리카 대륙의 여러 곳에서 곡물 생산량을 2~3배로 만든다. Faidherbia나 Acacia albida와 같은 질소고정 나무는 말라위, 잠비아, 탄자니아, 에티오피아, 수많은 다른 나라에서 거름을 주지 않은 옥수수의 생산량을 높이고 있다. 그들은 현재 니제르 도처에서 1헥타르의 200그루까지의 밀도로, 그 아래에서 자라는 작물은 3배의 생산량을 올리면서 100만 헥타르의 농경지에서 자라고 있다. 이러한 혼농임업의 조건에서 옥수수, 수수, 기장과 같은 식량 작물을 생산하는 것은 토양의 수분을 확보하고 미기후를 더 좋게 만들기에 건조한 해에도 가뭄에 대한 탄력성을 엄청나게 높였다.



자연의 거름 제공자


이 개발은 아프리카에서만 일어나는 일이 아니다. South Asia Network of Evergreen Agriculture는 자신의 대륙에서 늘푸른나무 혁명으로 나아가고자 시작했다.


나무 심기는 척박한 흙의 농장에 거름 제공자를 만들어 농부가 땅심을 회복하고 생산량을 늘리는 걸 돕는다. Gliricidia sepium 덤불은 그들의 뿌리에 질소를 고정하여 자연의 녹색 거름공장으로 작용해 말라위에서 농장의 생산량을 3배로 늘린다.


가지치기는 동물에게 먹이를 제공한다. 덤불은 또한 가뭄 기간에 흉작이들 위험을 줄이고 비가 너무 올 때는 침수되는 걸 예방한다.


질소고정 나무인 Faidherbia는 잠비아에서 거름을 주지 않은 옥수수의 생산량을 4배로 높였다. 그 나무는 니제르에서 500만 헥타르 이상의 농경지에서 자라고 있다.


카메룬에서 재배하는 야생 과실나무는 소농이 그들의 수입을 5배로 늘릴 수 있게 만들었다. 탄자니아에서 수천의 농민은 Allanblackia라는 나무를 심어 기름이 함유된 씨앗을 마가린을 만드는 회사에 팔아서 필요한 많은 수입을 벌고 있다. 


공용 토지에서 기르는 나무는 목재와 다른 생산물의 중요한 자원이다. 습윤한 서아프리카의 나라, 특히 브룬디, 르완다, 우간다에서 집의 텃밭에서 나무를 기르는 것은 집에서 필요한 땔감과 목재를 충당하고 있다. 많은 돈벌이작물 체계에서 나무는 그늘을 지게 하여 결국 나무가 자라도록 한다. 예를 들어 케냐 커피밭의 Grevillea robusta이다. 수단에서 아라비아 고무의 원천인 Acacia senegal는 혼농임업 체계로 널리 재배된다.



생물다양성 혜택


앞으로 50년에 걸쳐 혼농임업에 투자하면 대기에서 이산화탄소 500억 톤을 제거할 수 있다. 아프리카와 아시아 일부에서 일어나는 삼림 파괴의 대부분은 소농에 의해 널리 이루어지는 농경지 확장 때문이다. 혼농임업 활동은 숲이 농경지로 전환되는 것을 늦추고 농장에서 자라는 나무에 탄소를 붙잡음으로써 온실가스의 배출을 억제한다. 


토지이용 변화와 관련된 배출량의 30~40%를 잡을 수 있는 것으로 분류되지 않은 토지에서 소농이 혼농임업을 개발하고 있다. 농부가 나무를 심도록 장려하는 것은 농부의 수입을 늘리고 더 많은 탄소를 격리하며 생물다양성에 혜택을 가져올 잠재력을 가지고 있다. 









-------------------------------------------------


대규모 단작을 할 경우 잡초라고 불리는 다양한 풀과 나무가 자라는 것을 방지하기 위해 매년 적절한 시기에 땅을 갈게 됩니다. 그럴 경우 토심이 낮아지면서 경반층이 형성되고 땅심도 급격히 떨어지게 되어 각종 비료와 농약의 힘을 빌어야 농사를 지을 수 있게 됩니다. 헌데 이것을 완화시켜 줄 수 있는 방법이 혼농임업입니다.


간단히 설명하면 위에 다양한 사진처럼 적절한 간격으로 나무를 심어 그 사이에 농작물을 재배하는 방법입니다. 이렇게 심어 놓은 나무들은 강한 뿌리를 통해 땅을 깊게 경운하고 물을 저장하며 토양에 양분을 제공하게 됩니다.


또는 가축들을 방목하는 넓은 초지에 드문 드문 나무를 심어 가축들이 쉴 수 있는 그늘 제공과 다양한 먹이를 공급하는 효과도 있습니다.


또 하나 장점은 나무를 심어놓고 풀을 기르는 구역에서 다양한 곤충과 미생물들이 서식하기 때문에 농작물에 위해를 가하는 병해충들이 일정 수준 이상으로 늘어나는 것을 방지하는 역활도 하게 됩니다. 


우려를 하는 부분 중에 나무로 인해 그늘이 발생하는 부분은 크게 걱정하지 않아도 됩니다. 남향으로 나무를 심으면 골구루 햇빛을 받을 수 있고 생각하는 것보다 적은 양의 햇빛만으로도 농작물은 잘 자랍니다. 그리고 성목 사이에 묘목을 심어 순환하는 구조를 만들고 적당한 시기에 큰 나무들은 벌목해서 목재로 판매하여 부수입을 올릴 수도 있습니다.


예전에 이 자료를 봤을 때는 심어놓은 나무들로 인해 기계화가 어려워 대규모 농사에는 효율이 떨어질거라 생각했는데, 사진을 보니 운전실력이 좋으면 괜찮지 않을까... 라는 생각도 하게 됩니다. ^^;;;


다양한 농법이 있지만 각 농법이 최대한 효율을 올릴 수 있는 지역이 있고 잘 맞는 농작물이 있을 것입니다. 그것을 찾아내는 것이 숙제겠지요. ㅋ

+ 최근 게시물