태터데스크 관리자

도움말
닫기
적용하기   첫페이지 만들기

태터데스크 메시지

저장하였습니다.


저는 만화를 좋아하는 편이 아닙니다. 전 대부분 만화들이 재밌지 않고 이상하다고 생각합니다. 하지만 '뉴요커' 에서 그린 이 만화는 좋아합니다.


(내용: 절대 새로운 생각은 하지 말아라) (웃음)


여기서 남자는 고양이한테 말하고 있어요. 감히 다른 생각을 하지 마라. 저는 저 고양이였던 것 같아요. 저는 항상 새로운 사고를 하고 싶어했어요, 아마 제가 이 분야에서, 화학자나 박테리아 유전학자와는 다른 배경을 가지고 있기 때문일 거에요. 그래서 사람들은 저에게 제가 왜 그러든 제가 누구든 제가 말하는 암의 원인이 말도 안된다고 말했어요.


그럼 제가 그것에 대해 왜 그렇게 생각하는지 말해볼게요. 이야기를 시작하면서, 먼저 이미 생물을 어느 정도 알고 계시는 분에게 죄송하지만, 일단 굉장히 간단하게 발생 생물학에 대해 알려드리고자 합니다. 당신의 어머니와 아버지가 만났을 때, 약간의 변이가 있는 둥그런 수정란이 되지요 이것이 자라고 자라서 이렇게 잘 생긴 남자를 만드는거죠.


(박수)


이 남자는 그의 몸 속의 모든 세포가 같은

 유전자 정보를 가지고 있어요, 그러면 어떻게 해서 그의 코가 그의 코가 되고, 그의 팔꿈치가 그대로 팔꿈치가 될까요? 왜 어느 날 아침 갑자기, 그의 코가 발로 변하지 않은 채로요? 그럴 수 있어요. 같은 유전적 정보를 가지고 있으니까요. 


여러분들 모두 돌리를 기억하실 겁니다. 돌리는 하나의 유선세포에서 왔어요. 왜 그렇게 되지 않는 걸까요? 그의 몸 속에는 얼마나 많은 세포가 있을지 추측해보세요. 한 10조에서 70조 사이의 세포가 그의 몸 속에 있어요. 조라니! 그러면 어떻게 이 세포들이 같은 유전적 내용을 가지고 조직을 형성했을까요? 여러분들이 몸 속에 있는 세포의 위대함을 생각을 하면 제가 앞서 제기했던 문제가 더 흥미로워질겁니다.


현재 가장 우세한 암에 대한 이론에 의하면 한 암세포 안에 하나의 종양 유전자가 있고 그 종양 유전자가 암환자를 만드는 것 입니다. 저한테는 이것이 말도 안된다고 생각해요. 여러분은 조가 어떻게 보이는지 아시는 지요? 봅시다. 보면 0 다음에 계속 또 0 이 이어지네요.

만약 이 세포들 중 0.01%의 세포가 돌연변이가 되고, 0.001%가 암이 있다면, 당신은 암 덩어리가 될거에요. 당신은 암세포로 뒤덮여 있을 거에요. 그런데 그렇지 않잖아요. 왜그럴까요?


저는 여러해 동안 여러 실험들을 하면서 그 원인이 내용물과 구조라는 것으로 결론 내렸습니다.


이 사실을 보여줄 수 있었던 몇몇 중요한 실험들에 대해 간단히 얘기해볼게요. 저는 이 바이러스를 연구했고, 그 바이러스는 닭 내부에서 못생긴 종양을 만들었어요. 라우스가 이 바이러스를 1911년에 발견했지요. 이것은 처음으로 발견한 암 바이러스였고, 그 걸 제가 :"암유전자"를 뜻하는 "종양유전자"라고 부르게 된 것이죠. 그는 여과된 액체를 얻어냈어요. 그는 필터에 종양을 여과시켜서 얻어냈죠. 그는 이것을 다른 닭에 주입시켰고 또 다른 종양을 얻어냈습니다.


과학자들은 매우 흥분했죠. 그리고 그들은 하나의 종양유전자가 그런 결과를 초래할 수 있다고 말했습니다. 하나의 종양유전자면 된다고요. 그래서 그들은 닭의 세포들을 배양조직에 넣고, 그 위에 바이러스를 넣었어요. 양이 많아지면, 과학자들은 어느 것이 종양이고 어느 것이 정상인지 판별하겠죠.


다시 말하자면 저는 이게 말이 안된다고 생각해요. 다양한 이유로, 우리는 종양 유전자를 파란 표시기에 부착시킨 다음 종양 유전자를 닭의 배아에 투입했습니다. 보세요. 저건 배아 속에 있는 아름다운 날개에요. 저 파란 세포 하나 하나가 한 암세포 안에 있는 암 유전자고, 그 유전자들이 저 날개의 일부분입니다. 그래서 우리가 저 날개를 분해해서 접시위에 놓으면, 파란 세포 덩어리를 볼 수 있습니다. 그래서 닭에서는 종양을 얻을 수 있는 반면, 배아에서는 그렇지 않아요. 하지만 배아를 분해해서 접시 위에 놓으면 또 다른 종양을 볼 수 있어요. 무슨 의미일까요? 이것은 미세 환경과 세포들을 둘러싸고 있는 내용물이 사실은 암유전자와 암세포에게 무엇을 해야하는지 알려주고 있는 겁니다.


이제 일상적인 에를 들어볼게요. 한 번 인간의 유선에 대해 말해 보도록 하죠. 저는 유방암을 연구합니다. 여기 인간 유방 사진이 있는데요. 많은 사람들이 유방이 어떻게 생겼는지는 알지만 유방 안에 대해서는 잘 모르죠. 그 안에는 예쁘게 자라고 있는 나무 모양의 구조들이 있습니다. acinus라 부르는 유선이 있는데 선방은 유방 속에 있는 미세한 튜브로 아이가 젖을 빨 때, 선방을 통해 젖이 젖꼭지까지 이동을 합니다. 우리는 선방 약간을 가지고 실험을 하고자 결정했습니다.


우리는 아릅답다고 말하죠. 아 예쁜 구조를 보세요. 우리는 이 구조를 만들고 싶고, 질문을 했죠. 어떻게 세포가 저런 걸 할까? 여러분들 사진을 보면, 빨간 세포들 주위로 파란 세포들이 둘러져 있고, 다른 세포들이 빨간색과 다른 세포들을 쥐고 있고 그 뒤에는 사람들이 보통 비활성이라고 생각하는 물질이 있어요. 그리고 그 물질은 모양을 유지하기 위해 구조를 갖추고 있어요. 수 년전에 우리는 우선 전자현미경으로 그 사진을 찍었습니다. 여기 꽤 예쁜 한 세포가 있는데 이 세포는 밑부분이 있고, 윗부분이 있어요. 이것은 많은 양의 젖를 분비하고 있습니다. 왜냐하면 이 세포는 임신 초기의 쥐의 세포이기 때문이죠.


이 세포들을 접시위에 올려놓으면 3일 내로 저렇게 됩니다. 그들은 완전히 잊어버렸어요. 그 세포들을 꺼내서 접시위에 두면 젖을 만들지 못해요. 완전히 잊은거죠. 예를 들어, 왼쪽에는 노란색의 우유방울이 있는 반면, 오른쪽에는 하나도 없어요. 세포핵을 보세요. 왼쪽에는 세포핵이 동물 안에 있지만 오른쪽은 세포핵이 접시에 있어요. 그 둘은 서로 완전히 다른 겁니다.


이것이 무엇을 시사할까요? 이것 역시 내용물이 더 중요하다는 것을 말해줍니다. 다른 내용물에서, 세포들은 다른 일을 한다는 겁니다. 그러면 내용물은 신호를 어떻게 보낼까요? 그래서 아인슈타인이 "처음 보기에 이상해 보이지 않는 아이디어에는 희망이 없다"고 말했습니다. 여러분들은 제가 얼마나 반대를 받았는지 상상이 되실 거에요. 그래서 연구비를 받을 수 없었고 다른 많은 것들을 할 수 없었어요. 하지만 일이 잘 풀려서 다행입니다.


우리는 마우스의 유선의 단면 샘플을 만들었죠. 그리고 그 모든 선방들이 저기 있어요. 주변에 붉은 세포로 둘러싸인 이것들 각각은 acinus 에요. 우리가 그랬죠. 좋아, '이걸로 시도해서 만들어보자.' 저는 사람들이 그저 구조적인 교수대라고 생각하는 선방 주위의 빨간 세포들이 아마도 정보를 가지고 있을지도 모른다고 생각했습니다. 아마도 세포들에게나 세포핵에게 무엇을 하라고 말할 수도 있겠죠. 제가 말했듯이 ECM이라 불리우는 세포외 기질들이 세포들에게 무엇을 해야하는지 신호를 보냅니다.


우리는 저렇게 보이는 것을 만들기로 결정을 내렸었죠. 우리는 그 안에 알맞은 세포외 기질이 있는 부드러운 재료를 찾았고, 우리는 그 재료 안에 세포들을 4일동안 넣었습니다. 그랬더니 그들은 재조직되었습니다. 오른쪽은, 우리가 배양균조직에서 만들 수 있는 것입니다. 왼쪽에 있는 것은 동물 내부에 있는 걸로, vivo라 불리는 겁니다. 배양균안에 있는 것은 우유로 가득 차 있었고, 저 빨간세포는 우유로 가득 차 있어요. 우리는 미국 청중들을 위해 우유를 얻어냈어요. 그럼, 여기 아름다운 인간 세포가 있는데 여러분들은 역시 여기서도 내용물이 중요한 역할을 한다고 추측할 수 있을 거에요.


그럼 우리는 무엇을 했을까요? 저는 급진적인 가설을 세웠어요. 저는 만약 구조가 우세하다면, 암세포로 복귀시키는 구조는 암세포가 자신을 정상세포로 생각하도록 해야한다고 주장하죠. 할 수 있을까? 그래서 시도해보았죠. 그렇게 하기위해서는, 우리는 악성세포로부터 정상세포를 구분할 수 있는 방법이 필요했습니다. 왼쪽에 있는 것은 인간 유방에 있는 한 개의 정상세포인데 세포를 세포외 기질이 있는 삼차원의 부드러운 젤에 넣으면 이렇게 아름다운 구조를 만들어냅니다. 오른쪽에는, 매우 못생긴 세포들이 계속 자라고 정상 세포가 멈춰있는 걸 볼 수 있어요. 더 확대된 사진에서는 정상 선방과 못생긴 종양을 보실 수 있어요.


우리는 이 못생긴 종양들의 표면 위에 무엇이 있을지 궁금해했어요. 암세포가 미친듯이 신호를 보내고 그들의 경로가 모든 것을 망가트리는데, 우리가 그들을 진정시키고 정상 수준으로 만들수 있을까? 이 실험은 멋졌어요. 절 놀라게 했죠. 이것이 우리가 얻어낸 결과입니다. 우리가 악성 형태를 정상으로 되돌아가게 했어요.


(박수)


제가 실험할 때, 악성 형태 하나만 가지고 하지 않았다는 것을 보여드리기 위해 여기 짧은 영상이 있습니다. 왼쪽에는 모든게 악성세포들이고, 처음에 악성세포들 사이에 하나의 침입자 세포를 넣었습니다. 무슨 일이 일어났는지 보세요. 그들이 다 똑같이 됐어요. 우리는 그 오른쪽에 있는 세포들을 쥐에 주입시켰어요 아무 것도 종양을 만들지 않았어요, 그러나 다른 세포 것들을 넣었더니 결과는 100퍼센트 종양이 생겼죠.


이것은 암에 대한 새로운 생각이자, 희망적인 생각이에요. 우리는 이러한 수준에서 암에 대한 것들을 다룰 수 있어야하고, 이 결론들은 성장과 악성적인 행동은 세포 조직 수준에 제한된다는 것을 말합니다. 그리고 세포 조직은 세포외기질과 미세 환경에 의존적입니다. 즉, 이렇게 해서 형태와 기능은 역동적으로 상호작용하는 것입니다. 그러면 여기서 다시 5 초만 쉬어가보죠. 형태와 기능이죠.


그리고 물론, 우리가 지금 어디로 가고 있는지 의문을 갖죠. 이런 식의 사고 방법을 임상에 적용하고 싶습니다. 그렇게 하기 전에, 저는 여러분들이 앉아있는 시간 동안 70조의 세포에서 세포외 기질이 핵한테 신호를 보내고 있고, 반대로 핵은 세포외 기질한테 신호를 보내고 있다는 것을 유념하시기 바랍니다. 그런 원리로 신체 균형이 유지되고 복구되는 것이지요.


우리는 많은 발견을 이룩해 왔어요. 우리는 세포외 기질이 염색체에 신호를 보낸다는 것을 밝혀냈어요. 또, 우리는 유선의 특정 유전자들에 있는 약간의 DNA가 실제로는 세포외 기질에 반응한다는 것도 밝혀냈어요. 이렇게 하는데 많은 시간이 걸렸지만 매우 성공적이었습니다.


다음 슬라이드로 넘기기 전에, 저는 더 많은 발견이 이루어질 것이라고 말하고 싶습니다. 우리가 모르는 미스테리들이 많이 남아있어요. 그래서 저는 학생들과 포스트 닥터 과정중인 학생한테 자만은 호기심을 죽이기 때문에 자만해지지 말라고 항상 말해요. 호기심과 열정. 여러분들은 무엇을 더 찾을수 있을지 항상 생각하셔야됩니다. 아마 제 발견에 더 덧붙여야 될 것이나 변경되야 할 것도 생각해봐야겠죠.


우리는 이제 놀라운 발견을 했습니다. 제 연구실에 있는 물리학 포스트 닥터 과정생이 저에게 물었어요. 세포를 넣으면 이 세포들이 무엇을 하죠? 세포가 뭔가를 한다면 초기에는 무엇을 하죠? 저는 모른다고 했어요. 우리는 그들을 볼 수 없으니까요. 옛날에는 확대된 이미지들이 없었어요. 그래서 영상 전문가이자 물리학자인 그녀는 놀라운 일을 해냈어요. 이것은 삼차원으로 표현된 인간의 유방세포에요. 보세요. 세포는 계속 움직이고 있어요. 그 움직임에 일관성이 있고요. 거기에, 암 세포를 넣자, 여기저리로 퍼져나가거나 그들은 이런 건 하고, 또 그들은 이런 것은 하지 않습니다. 우리가 암세포를 복구시킬 때도, 세포는 다시 이렇게 하고 있어요. 정말 저를 놀라게 했어요. 그러니까 세포가 배아처럼 움직이는 거에요.굉장히 재밌는 거에요. <--- 이부분이 세포가 회전하는 영상.


저는 제 강연을 시 한편으로 마무리 지으려합니다. 저는 영문학을 좋아 했고 대학시절때 토론을 했었죠. 어느 것을 내가 해야할지를 두고요. 불행인지 다행인지, 화학이 이겼답니다. 아무튼 여기 예이츠의 시가 있는데 제가 마지막 두 줄을 읊겠습니다. "학교 아이들 사이에서" 라는 시입니다. "음악에 흔들리는 몸이여/반짝이는 시선이여/ 어떻게 우리가 무용수와 춤을 구분할 수 있겠는가?" 여기 머스 커닝햄인데, 제가 더 어렸을 때 그와 춤을 추게 되서 운이 참 좋았어요. 그는 무용수고, 그가 춤을 추는 동안, 그는 무용수이자 춤이에요. 그가 멈출때면, 아무 것도 없습니다. 형태와 기능같은 거에요.


제 그룹의 현재 사진을 보여드릴게요. 저한테 이렇게 훌륭한 학생들과 저게 많은 가르침을 주었던 포스트 닥터 과정에 있는 사람들, 그리고 그룹들 중 많은 사람들과 함께 있어 운이 좋았습니다. 그들은 미래고 저는 그들에게 고양이가 되는 것과 "다른 생각 말아라"라는 말을 듣는 것을 두려워 하지 말라고 합니다.


저는 이 얘기를 하고 강연을 마칠까합니다. 왼쪽 사진은 나사 위성으로 찍은 건데 물이 해변가로 흘러드는 것입니다. 오른쪽 사진은 산호입니다. 만약 당신이 유선을 가지고 이것을 퍼뜨린 다음 지방을 빼내면, 접시위에서는 이렇게 보입니다. 그들은 똑같이 보입니까? 그들은 같은 패턴을 가졌나요? 왜 자연은 그런 것을 끊임없이 할까?


저는 여러분들에게 우리는 유전자 게놈을 분석했고, 유전자의 서열에 대한 모든 것을 알고 있어요. 우리는 유전자의 연속체와 유전자의 언어와 유전자의 알파벳에 대해서도 모든 것을 알고 있습니다. 하지만 우리는 언어와 알파벳 구조에 대해 아는 게 전혀 없습니다. 결국, 이것은 멋진 새로운 시각이고, 발견한다는 것은 젊은이와 저같이 열정적인 노인한테 훌륭한 일입니다.


그러니까 힘차게 하세요!


(박수)


세포외기질_위키백과

생물학에서 세포외기질(extracellular matrix)은 주로 동물의 구조적 지지등을 담당하는 조직이다. 세포외기질은 동물의 결합 조직에 속한다.

세포외기질은 세포 사이의 기질과 기저막으로 구성된다. 세포 사이의 기질은 여러 세포들 사이의 공간을 채우는 기질이다. 다당류로 이루어진 겔과 단백질 섬유가 세포 사이에 채워져 있어 세포외기질의 완충 작용을 돕는다. 기저막은 얇은 종이처럼 구성되어 있으며, 그 위에 상피조직이 위치한다.



저작자 표시 비영리 변경 금지
신고

원제 Infection: The Uninvited Universe
감염 
제럴드 N. 캘러헌 (지은이) | 강병철 (옮긴이) | 세종서적 | 2010-07-09



 
2003년 전 세계는 사스(SARS, Severe Acute Respiratory Syndrome) 공포에 휘청거렸다. 홍콩에서 시작된 사스는 16주 만에 사그러 들었지만 그 사이 전 세계적으로 8,737명을 감염시켰고 그 중 813명이 사망했다. 사스가 극성을 부리던 시기에 국내 상황도 국가 비상사태를 방불케했다. 또 2009년 신종플루가 퍼지면서 모든 모임들은 취소가 되었고 해외여행도 취소사태가 벌어졌다. 

사스와 신종플루는 인플루엔자 바이러스와 코로나 바이러스에 의해 발생한 전염병이다. 그 당시 많은 사람들은 이 전염병들을 예방하기 위하여 예방접종을 맞았다. 또 신종플루의 특효약이라는 타미플루를 구입하기 위하여 열을 올렸다. TV에서는 전염병을 예방하기 위해서는 위생에 만전을 기해야 한다며 이런 저런 손세정제들 광고가 나왔고 히트를 쳤다. 손세정제는 전철역이나 학교 등 공공장소 곳곳에도 설치되었다. 사람들은 세균과 바이러스를 예방하기 위해서 시시때때로 손을 씻었다. 사람들의 세균이나 바이러스에 대한 두려움은 커져만 갔다. 

세균이나 바이러스에 대한 반감은 전문가들도 별다르지 않다. 대학교에서 수의학을 배울 때 미생물학을 배운다. 세균에는 어떤 것들이 있고 바이러스에는 어떤 종류가 있으며 그러한 세균이나 바이러스들이 어떤 질병을 일으키는지 배운다. 그리고 내과학이나 공중보건학, 전염병학, 면역학에서 그런 세균이나 바이러스들이 일으키는 여러 질병들과 그 질병을 진단하고 치료하는 방법을 배운다. 또 약리학에서 다양한 항생제의 기전과 효능을 배운다. 적을 알고 적들과 싸우기 위한 무기까지 배우는 것이다. 그렇게 세균과 바이러스는 무찔러 버려야 할 적일 뿐이라고 배운다. 

인류의 역사에는 많은 전염병들이 있었다. 흑사병, 홍역, 볼거리, 백일해, 파상풍, 광견병 등 여러 전염병은 수많은 사람들의 목숨을 앗아갔다. 하지만 의학이 발달하기 이전에 사람들은 왜 수많은 사람들이 죽어 가는지 몰랐다. 그래서 때로는 마녀의 소행이라며 마녀사냥을 하기도 했다. 그러다가 파스퇴르가 미생물을 발견하면서 전염병의 원인이 눈에 보이지 않은 아주 작은 미생물에 의한 것이라는 것을 알게 되었다. 파스퇴르는 백신 접종법을 개발했고 영국의 세균학자 플레밍이 곰팡이에서 페니실린을 발견했다. 이로써 사람들은 눈에 보이지도 않는 이 작은 미생물들을 백신과 항생제로 정복할 수 있는 하찮은 존재라고 생각했다. 하지만 그것이 전부일까? 

린 마굴리스의 『마이크로 코스모스』를 보면 지구의 생명체가 어떻게 진화해 왔는지 나온다. 지구가 생성되고 화산연기가 자욱하던 때에 처음 나타난 생명은 세균이다. 이 세균은 20억년에 걸쳐서 지구를 생명이 생존할 수 있는 환경으로 만들었다. 그리고 변화한 환경에 맞춰서 세균은 진화하며 다양한 생명체로 진화한다. 그렇게 진화하는 과정 속에서 세균은 각 생명들과 공진화할 수 있는 방식을 모색한다. 세균의 세대에서 다른 생명체가 태어났다고 해서 세균의 세대가 끝난 것이 아니라 세균을 기반으로 해서 또 다른 생명체가 탄생을 한 것이다. 

가령 모든 진핵세포에는 미토콘드리아라는 세포소기관이 있다. 이 미토콘드리아는 세포 내에서 발전소와 같은 것으로 먹이로 섭취한 유기물질에 축적된 에너지를 ATP 형태로 만들어 세포들이 에너지원으로 사용할 수 있도록 해준다. 그런데 특이한 것은 미토콘드리아는 진핵세포와 다른 DNA를 가진다. 이것은 미토콘드리아가 진행세포와는 별개의 존재라는 것을 의미한다. 미토콘드리아는 고대에 원핵생물로 매우 활동적이었을 것으로 추정된다. 이 원핵생물은 진핵생물을 뚫고 들어가 진핵생물을 먹이로 하여 번식했겠지만 진핵생물을 파괴시킴과 함께 자신도 파괴되었다. 반면 숙주세포를 파괴시키지 않고 공존하는 방식을 취한 미토콘드리아는 숙주세포와 함께 살아남아 오늘날과 같이 모든 세포들에서 필수불가결한 요소가 되었다. 이렇게 공생한 미토콘드리아가 살아남아 숙주세포와 함께 번성하게 되었다. 

그러한 결과로써 오늘날 지구상에 많은 생명체들이 있는 것이다. 보이는 것이 전부는 아니다. 또 보이는 것이 중요한 것이 아닐 수도 있다. 지구상에는 눈에 보이는 수많은 생명체들이 있다. 하지만 지구에는 눈에 보이는 생명체보다 더 많은 10²⁹(10의 29승)개의 세균이 있다. 이 세균들이 식물이 공기 중의 질소를 고정할 수 있도록 해주고 동물들이 섭취한 먹이를 소화시킬 수 있도록 도와준다. 또 나무를 썩게 해서 흙으로 돌아가게 하고 동물의 분비물을 분해시키며 오물을 정화시킨다. 그렇게 하여 자연의 생명체들이 끝없이 순환할 수 있도록 해준다. 

면역학, 병리학자인 제럴드 N. 캘러헌은 『감염』에서 기존 사람들의 세균에 대한 인식은 너무나 잘못 되었다고 이야기 한다. 그는 세균의 감염은 질병의 방식만이 아니며 삶의 방식이기도 하다고 말한다. 『감염』에서 그는 세균이 생명에 주는 이로운 점들과 해로운 점들을 이야기하고 있다. 또 사스와 말라리아, 탄저병, 페스트, 광우병, 에이즈, 독감 등 갈수록 문제성이 심각해지는 전염성 질환에 대해 말하고 있다. 

사람들은 대부분 자신은 무척 깨끗하거나 순수한 존재라고 생각한다. 하지만 자신의 몸 속에 얼마나 많은 세균이 있는지 알게 된다면 소스라치게 놀랄 것이다. 사람의 소화관 내에 있는 장내 세균만 하더라도 우리 인체를 이루는 세포의 수보다 많은 대략 100조~120조에 달하며, 그 종류는 300~400 종류에 달한다. 인간 게놈의 서열 분석을 마쳤을 때, 과학자들은 인간 염색체 속에서 고작 2만~5만 종의 유전자만을 발견했다. 평균적인 인간의 몸속에서 오직 10퍼센트의 세포만이 '인간 세포'라고 할 수 있다. 절대 다수인 나머지 90퍼센트의 세포는 세균이다. 또 우리가 인간 세포라고 부르는 10퍼센트 중 단 한 개의 세포도 완전히 인간 세포라고 할 수 없다. 이 세포들 속에도 세균이 들어 있기 때문이다. 

만약 생명체에 세균이 감염되어 있지 않다면 어떤 결과가 발생할까? 과학자들은 무균마우스를 이용하여 다양한 연구를 했다. 연구결과 세균에 감염되지 않은 동물들은 감염된 동물들에 비해 음식과 물이 더 많이 필요했다. 무균 마우스를 대상으로 한 여러 실험에서 무균 상태의 설치류는 정상 설치류보다 3분의 1의 물을 더 마셔야 했다. 물은 대장에서 대부분 재흡수된다. 그러나 무균 상태의 대장은 정상세균총이 자리 잡은 대장에 비해 물을 재흡수하는 능력이 훨씬 더 떨어진다. 세균은 복합당 등 고열량 식품의 소화를 도와준다. 그래서 미생물의 도움이 없다면 에너지가 풍부한 복합당은 그냥 몸을 빠져나간다. 이런 손실을 보충하기 위해 무균 상태의 동물은 단순당과 지방을 휠씬 더 많이 섭취해야 한다. 또 무균 마우스는 정상 마우스라면 체내에서 합성할 비타민과 기타 영양소를 공급받아야만 한다. 우리 위장관에 서식하는 세균이 생명체에게 필수적인 것을 제공하는 셈이다. 

건강한 생명체는 세균에 감염되지 않은 상태가 아니다. 건강한 생명체는 세균이 감염된 상태에서 건강한 상태를 유지하는 것이다. 그러기 위해서는 세균에 반복적으로 감염되면서 면역력을 갖는 과정과 면역세포가 병원균과 싸워서 이길 수 있도록 도와주는 정상세균총들이 필요하다. 우리는 세균에 대하여 배울 때 몸에 질병을 일으키는 병원균에 대해서만 지나치게 경각심을 갖도록 배우지만 생명체와 공생하고 있는 대다수의 세균들의 역할에 대해서는 등한시한다. 몸을 건강한 상태로 유지할 수 있도록 생명체와 공생하고 있는 세균집단을 정상세균총이라고 한다. 이들 정상세균총은 소화 흡수, 3000종 이상의 효소 생산, 위장관발달, 면역계발달, 감염예방, 화학물질 분해, 위장관 혈관 형성, 수분 흡수 등 숙주의 기능을 향상 시킨다. 또 어떤 세균은 숙주 세포와 상호 반응하여 항생물질을 생산하여 생명체가 심각한 감염증에 걸리지 않게 해준다. 

건강한 생명체는 병원균에 감염되더라도 면역작용으로 병원균이 병적상태를 만들지 못하도록 스스로 조절한다. 이렇게 스스로 조절할 줄 아는 상태는 그냥 이루어지는 것이 아니다. 평상시에 수없이 세균들과의 전쟁을 치루면서 이루어지는 것이다. 이것은 군인이 훈련을 통해서 실전에 제 역할을 할 수 있는 것과 같다. 위생 가설(Hygiene hypothesis)이라는 것이 있다. 이것은 소아 천식과 알레르기의 원인에 관심을 갖고 있던 소아과 의사인 에리카 폰 무티우스가 통일 독일에서 동독과 서독의 아이들을 비교하면서 세워졌다. 무티우스 박사는 자란 환경이 지저분했던 동독의 어린이들이 천식과 알레르기가 더 심할 것이라고 예상했다. 하지만 연구 결과는 정반대였다. 중국과 오스트리아, 스위스에서 연구를 계속 진행한 무티우스 박사는 어린 시절에 세균에 노출된 정도와 천식 발생률 사이에는 반비례 관계가 있음을 알아냈다. 조금 지저분한 곳에 자란 아이들이 면역력이 높았다. 

사람들은 페니실린이 발견되면서 세균과의 전쟁에서 승리할 것이라고 생각했다. 하지만 얼마 있지 않아서 페니실린에 저항하는 세균이 생겨났다. 이에 따라 사람들은 연구를 거듭하여 페니실린에 저항하는 세균을 죽일 수 있는 항생제를 개발했다. 하지만 이 항생제에 대해서도 내성을 가진 세균들이 생겨났다. 세균들은 항생제에 의해서 죽는다. 하지만 간혹 살아난 세균이 있는 경우 그 세균은 자기가 그 항생제를 어떻게 이겨냈는지 그 정보를 플라스미드를 비롯한 여러 가지 방식으로 다른 세균들과 공유한다. 그래서 어떤 항생제에 대해서 내성균이 생기는 경우 내성균은 급속히 늘어난다. 인간과 세균의 공방전에서 여전히 세균이 유연하게 방어를 하고 있는 상황이다. 

인간은 1867년 파스퇴르에 의해 세균의 존재를 밝혀내고 이후 항생제를 개발하는 등 세균과의 전쟁에 돌입하였다. 하지만 이것은 세균과 생명이라는 존재를 인간중심적인 시각에서 단편적으로 파악한 오류에서 기인한다. 지구상의 모든 생명체들은 22억년에 걸쳐 세균에서 진화했으며 세균을 기반으로 생존하고 있다. 생명체는 세균의 협조를 바탕으로 생존한다. 세균이 없다면 어떠한 생명체도 존재할 수 없다. 인간이 세균보다 월등하고 우월하게 진화한 존재가 아니라 생명이 존재하기 위한 또 하나의 방식으로 진화한 것이다. 그런 전체 관계망 속에서 인간을 파악하고 세균을 파악해야 한다. 그래야만 인간 또한 세균들 속에서 지속가능할 수 있는 방향을 찾을 수 있을 것이다. 나는 단지 ‘나’가 아니다. 나는 미생물로 이루어진 또 하나의 소우주다. 
-해를 그리며 
저작자 표시 비영리 변경 금지
신고



예전에 비하면 네임 벨류가 왕창 떨어진 안철수연구소. 한국의 개인 유저용 백신 시장이 무료 백신을 위주로 재편되면서, 유료 시절보다 네임 벨류가 팍팍 떨어져 버렸습니다. (흔히 주위 사용자들을 보면 이스트소프트의 알약이 1위, 네이버 PC그린이 2위 그룹이고, 현재 안철수연구소에서 서비스 중인 '빛자루' 는 하위 그룹이지요)

유료 서비스를 유지해 가면서도 무료 서비스인 빛자루를 꺼내 든 안철수 연구소지만, 성과가 좋지 못했습니다. 얼마 전의 윈도우를 먹통으로 데려가는 사고도 있었고, 빛자루 프로그램 자체가 제법 무거운 편이라서 좋은 평가를 받지 못했지요.

그러던 가운데, 드디어 최후의 수단(?)이라고 봐도 될 제품이 등장했습니다. 바로 V3 Lite.
이름에서 풍기는 이미지대로 이제 고급 제품은 기업/단체를 위주로 판매용으로 가고, 개인 사용자를 위한 가벼운 버전은 무료로 배포하겠다는 의미인 것 같습니다.

설치는 V3 Lite 홈페이지 에서 다운로드 받아서 하시면 되는데, 별 달리 설정할 사항이 없습니다. 단 한 가지, '사이트가드' 라는 녀석이 있는데, 얘는 빼고 설치하시는게 좀 덜 귀찮으시리라 생각됩니다. (역할은 피싱 사이트 등을 검색해서 위험도가 있거나 하면 알려주는 녀석입니다.)

아무튼, 설치해서 실행하게 되면 일단 초기 엔진 업데이트를 하게 되고, 트레이에 녹색 V3 아이콘이 생깁니다. 더블 클릭하거나 해서 불러내면 이런 화면이 나오지요.



너무 간단하게 생겨서 별로 설명할 꺼리가 없습니다. 그냥 한글만 아셔도 대충 뭘 누르면 뭐가 되겠구나.. 하는 느낌이 올 정도로 간단하게 생겨 있습니다.


빠른 검사를 눌러주면 이런 창이 나오면서 검사가 진행됩니다. 위의 설명에서 깜빡하고 안 적었는데, V3 Lite의 엔진은 빛자루나 과거 V3과는 다른 엔진입니다. WARP엔진이 아닌 뉴 프레임웍을 사용하고 있습니다. (덕분에 많이 가벼워졌습니다)


대충 검사시의 메모리 사용량이 이 정도입니다. V3Light.exe란 녀석이 검사가 진행되는 본체이고, V3LSve는 윈도우용 서비스(실시간 감시용), V3LTray는 트레이에 들어가 있는 녀석입니다.

참고로 검사를 하지 않고 실시간 감시만 사용할 시에는 메모리 사용량이 더 적어서, 아래 스샷처럼 됩니다.


제가 여지껏 써 본 어떤 백신보다도 작은 메모리 점유율을 자랑합니다.

검사 메뉴에서는 기본적으로 악성코드 검사와 바이러스 검사가 진행되고, 다른 메뉴들도 있습니다. PC최적화라거나 PC관리가 그것입니다.


PC최적화에서는 위 스크린샷 처럼 평범한 언제나의 PC 최적화 메뉴들이 있습니다. 하기 싫은 게 있으면 체크 표시를 지워주면 되고, 최적화 시작에서 종료까지 소요되는 시간은 10초 남짓입니다. (임시 파일 청소할 것이 많다면 물론 좀 더 오래 걸립니다)


이 스크린샷은 PC 정리 메뉴의 것. 설치된 프로그램의 목록을 보고 삭제할 수 있으며, ActiveX 나 툴바의 경우에도 마찬가지입니다. (툴바의 경우에는 실제 툴바 소프트웨어가 아닌 녀석도 표시되는 경우가 있었기에 주의하셔야 합니다.)

보안 패치의 경우에는 일반적으로 윈도우 업데이트에서 나타나는 항목 이외에도 좀 중요해 보이는 업데이트가 표시되어 있습니다. 사실은 설치 안 하셔도 괜찮은 것들입니다.

안철수연구소에서 수 년간의 실망을 안겨준 끝네 나타난 V3 Lite는 일단은 제 개인적으론 합격점을 주고 싶습니다. 물론 외국산 백신들에 비해 상대적으로 떨어지는 검색율을 가지고 있지만, 발전된 모습을 보이는 것을 보면 아직은 등져버리기엔 좀 이른 느낌이 있네요. 베타 버전의 완성도가 이 정도라면, 정식 버전에서는 얼마나 더 나은 모습을 보여줄 수 있을지도 기대가 됩니다.

다만, 사이트가드의 경우에는 좀 더 사용자를 귀찮게 하지 않는 방향으로 개선이 필요한 듯 합니다. 검사의 경우에도 원클릭 검사면 충분하지 않을까 싶긴 하지만, 정밀 검사를 보다 더 쉽게 할 수 있도록 해 주면 좋겠네요. 프로그램 전반의 간결하고 쉬운 인터페이스에 비하면 환경설정 쪽은 좀 불친절하지 않나 싶기도 하고요. 하지만 계속해서 개선되기 위한 베타 버전인만큼, 앞으로도 기대해 볼 수 있는 프로그램입니다.
-ariake.egloos.com by有明-



저작자 표시 비영리 변경 금지
신고



오늘 안철수연구소로 유명한 안철수박사님이 회사에 오셔서 "차세대 전문가에게 필요한 다섯 가지 마음가짐"를 주제로 강의를 해주셨습니다.

Agenda

1. Broadminedness
2. Communication
3. Positive taking
4. Continues Leaning
5. Pushing the limit

로 진행이 되었습니다.
강의가 끝나고 코끝이 찡해오는 느낌이 들어 제 자신이 부끄럽다는 생각도 들고 많은 생각을 하게 하는 시간이었던거 같습니다.

또한 안철수님의 책읽는 습관도 공감이 많이 갔습니다.

안철수님의경우 책을 읽을때
1. 책을 읽은시간만큼 그책에 대해서 생각하는 시간을 갖는다
2. 요약본의 책은 보지 않는다. 요약본을 읽게 되면 지식은 될수 있겠으나 그 책이 나에게 도움이 될수 있지는 않는다. 저자가 책을 쓸때 두껍게 쓰는 이유는 좀더 많이 저자의 생각을 독자에게 전달하고자 하는것이다.
3. 한가지만 보지 않는다. 한가지 책이 바이블이 되는사람, 책으로 벽을 쌓는사람은 책이 독이 될뿐이다.

1. Broadminedness
외과전공의 시절 쥐의 심장에 전극을 꼽고 전류 테스트를 하면서 선배에게 핀잔을 받았던 경험을 소개해 주시면서 나에게는 상식이지만 다른사람에게는 상식이 아닐수 있다는 이야기를 해주셨습니다.

2. Commnunication
우리나라는 도요타의 'T'자형 사람보다 communication 능력이 추가된 'A'자형 인간이 되어야 한다.

3. Positive taking
"Responsible for half" 결과에 대해 결과가 좋던 나쁘던 절반의 책임은 자기 자신에게 있다.
잘못에 대해서 인정하고 그잘못을 반성하고 차후에 같은 잘못을 하지 않는 노력이 필요하다.

4. Continues Leaning
노력하지 않으면 나의 경쟁자는 보이지 않는다.
이부분에서 노력하지 안는 제 자신이 너무 초라하고 부끄러웠던거 같습니다.
전공의시절 군에서 3개월동안 책을 보지 못하던 시절에 머리속에 있던 경쟁자들이 보이지 않았던 기억...
안연구소에서 CEO로 계실때 새벽 4시, 5시 정도에 일어 나면 수산시장의 불은 이미 환하게 밝혀있고 도로는 많은 차들로 분주 했다고 합니다. 그시간에 내가 잠을 자고 있다면 그 사람들이 보이지 않을뿐이 없어진건 아니겠죠...

5. Pushing the limit
종군기자의 "insun Kang's story"라는 기사를 예로들어 자신의 한계를 키우는 것의 중요성을 말씀해 주셨습니다.
-쩐의서방-

저작자 표시 비영리 변경 금지
신고

+ Recent posts